s
Sesiya.ru

Ответы по химии (75 вопросов с ответами)

Информация о работе

Тема
Ответы по химии (75 вопросов с ответами)
Тип Экзаменационные билеты
Предмет Химия
Количество страниц 35
Язык работы Русский язык
Дата загрузки 2014-12-24 08:15:14
Размер файла 389.8 кб
Количество скачиваний 91
Скидка 15%

Поможем подготовить работу любой сложности

Заполнение заявки не обязывает Вас к заказу


Скачать файл с работой

Помогла работа? Поделись ссылкой

1.
А́том (от др.-греч. ἄτομος — неделимый) — базовая единица материи которая состоит из плотного центрального ядра окружённого электронным облаком отрицательно заряженных элетронов. Атомное ядро состоит из смеси положительно заряженных протонов и электрически нейтральных нейтронов (кроме водорода-1, единственного стабильного ядра без нейтронов). Электроны в атоме связанны с ядром электромагнитными силами.
Модели атомов
Кусочки материи. Демокрит полагал, что свойства того или иного вещества определяются формой, массой, и пр. характеристиками образующих его атомов. Так, скажем, у огня атомы остры, поэтому огонь способен обжигать, у твёрдых тел они шероховаты, поэтому накрепко сцепляются друг с другом, у воды — гладки, поэтому она способна течь. Даже душа человека, согласно Демокриту, состоит из атомов
Модель атома Томсона (модель «Пудинг с изюмом», англ. Plum pudding model). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Была окончательно опровергнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.
Ранняя планетарная модель атома Нагаоки. В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбитам вращались электроны, объединённые в кольца. Модель оказалась ошибочной.
Планетарная модель атома Бора-Резерфорда. В 1911 году[2] Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»).
Строение
Субатомные частицы
Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно современным научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов; все атомы, кроме водорода-1, содержат также нейтроны.
Электрон является самой лёгкой из составляющих атом частиц с массой 9,11×10−31 кг, отрицательным зарядом и размером, слишком малым для измерения современными методами.[3] Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726×10−27 кг). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929×10−27 кг).[4] При этом масса ядра меньше суммы масс составляющих его протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5×10−15 м, хотя размеры этих частиц определены плохо.[5]
По современным научным представлениям как протоны, так и нейтроны состоят из элементарных частиц, называемых кварками. Наряду с лептонами, кварки являются одной из основных составляющих материи. И первые и вторые являются фермионами. Существует шесть типов кварков, каждый из которых имеет дробный электрический заряд, равный +2⁄3 или −1⁄3 элементарного. Протоны состоят из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков. Это различие объясняет разницу в массах и зарядах протона и нейтрона. Кварки связаны между собой сильными ядерными взаимодействиями, которые передаются глюонами.[6][7]
Электроны в атоме
При описании электронов в атоме в рамках квантовой механики, обычно рассматривают распределение вероятности в 3n-мерном пространстве для системы n электронов.
Электроны в атоме притягиваются к ядру, между электронами также действует кулоновское взаимодействие. Эти же силы удерживают электроны внутри потенциального барьера, окружающего ядро. Для того, чтобы электрон смог преодолеть притяжение ядра, ему необходимо получить энергию от внешнего источника. Чем ближе электрон находится к ядру, тем больше энергии для этого необходимо.
Электронам, как и другим частицам, свойственен корпускулярно-волновой дуализм. Иногда говорят, что электрон движется по орбитали, что неверно. Состояние электронов описывается волновой функцией, квадрат модуля которой характеризует плотность вероятности нахождения частиц в данной точке пространства в данный момент времени, или, в общем случае, оператором плотности. Существует дискретный набор атомных орбиталей, которым соответствуют стационарные чистые состояния электронов в атоме.
Каждой орбитали соответствует свой уровень энергии. Электрон может перейти на уровень с большей энергией, поглотив фотон. При этом он окажется в новом квантовом состоянии с большей энергией. Аналогично, он может перейти на уровень с меньшей энергией, излучив фотон. Энергия фотона при этом будет равна разности энергий электрона на этих уровнях (см.: постулаты Бора).

Атомы одного элемента могут иметь разное число нейтронов. Такие атомы называются изотопами, например, 24Mg, 25Mg, 35Cl, 37Cl. Массовое число атома равно сумме масс протонов и нейтронов. Масса ядра всегда меньше суммы масс протонов и нейтронов. Это так называемый дефект массы. Он связан с тем, что при образовании ядра из нуклонов (нуклоны - протоны и нейтроны) выделяется энергия связи ядра.
Самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц или ядер (α-частицы), называется радиоактивностью.
Изобары - это атомы, имеющие одинаковые массовые числа, но различные заряды ядер. Это, например, атомы изотопов аргона и калия.

2.

Квантово-механическая модель атома
Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).
Двойственная природа электрона
Подтвержденная экспериментально в 1927 г. двойственная природа электрона, обладающего свойствами не только частицы, но и волны, побудила ученых к созданию новой теории строения атома, учитывающей оба этих свойства. Современная теория строения атома опирается на квантовую механику.
Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определенную массу покоя), а с другой - его движение напоминает волну и может быть описано определенной амплитудой, длиной волны, частотой колебаний и др. Поэтому нельзя говорить о какой-либо определенной траектории движения электрона - можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.
Следовательно, под электронной орбитой следует понимать не определенную линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определенном расстоянии от ядра.
Квантовые числа — энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится.
Главное квaнтовое число n определяет общую энергию электрона и степень его удаления от ядра (номер энергетического уровня); оно принимает любые целочисленные значения, начиная с 1 (n = 1, 2, 3, . . .)
Орбитальное (побочное или азимутальное) квантовое число l определяет форму атомной орбитали. Оно может принимать целочисленные значения от 0 до n-1 (l = 0, 1, 2, 3,..., n-1). Каждому значению l соответствует орбиталь особой формы. Орбитали с l = 0 называются s-орбиталями,
l = 1 – р-орбиталями (3 типа, отличающихся магнитным квантовым числом m),
l = 2 – d-орбиталями (5 типов),
l = 3 – f-орбиталями (7 типов).

Магнитное квантовое число m определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Его значения изменяются от +l до -l, включая 0. Например, при l = 1 число m принимает 3 значения: +1, 0, -1, поэтому существуют 3 типа р-АО: рx, рy, рz.
Спиновое квантовое число s может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона, называемого спином (от англ. веретено). Для обозначения электронов с различными спинами используются символы: и .

Атомная орбиталь — одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n, орбитальным l и магнитным m квантовыми числами.
Название «орбиталь» (а не орбита) отражает геометрическое представление о стационарных состояниях электрона в атоме; такое особое название отражает тот факт, что состояния электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.
Принцип Паули
Принцип Паули, который часто называют еще принципом запрета, ограничивает число электронов, которые могут находиться на одной орбитали. Согласно принципу Паули, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа). Поэтому в атоме не должно быть двух электронов с одинаковыми четырьмя квантовыми числами (n, l, ml, ms).
Атом лития имеет три электрона. Орбиталь с самой низкой энергией - 1s-орбиталь - может быть заселена лишь двумя электронами, причем у этих электронов должны быть разные спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин −1/2 - стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными) спинами на одной орбитали можно схематически представить так:


Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, то есть 2s-орбиталь.
Правило Гунда
Правило Гунда (Хунда) определяет порядок заселения электронами орбиталей, имеющих одинаковую энергию. Оно было выведено немецким физиком-теоретиком Ф. Гундом (Хундом) в 1927 г. на основе анализа атомных спектров.
Согласно правилу Гунда, заселение орбиталей, относящихся к одному и тому же энергетическому подуровню, начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заселение орбиталей парами электронов с противоположными спинами. В результате суммарный спин (и сумма спиновых квантовых чисел) всех электронов в атоме будет максимальным.
Например, атом азота имеет три электрона, находящиеся на 2р-подуровне. Согласно правилу Гунда, они должны располагаться поодиночке на каждой из трех 2р-орбиталей. При этом все три электрона должны иметь параллельные спины:


3.

Заполнения атомных орбиталей

Заселение электронами атомных орбиталей (АО) осуществляется согласно принципу наименьшей энергии, принципу Паули и правилу Гунда.
Принцип наименьшей энергии требует, чтобы электроны заселяли АО в порядке увеличения энергии элекронов на этих орбиталях. Это отражает общее правило – максимуму устойчивости системы соответствует минимум ее энергии.
Принцип Паули запрещает в многоэлектронном атоме находиться электронам с одинаковым набором квантовых чисел. Это означает, что два любых электрона в атоме (или молекуле, или ионе) должны отличаться друг от друга значением хотя бы одного квантового числа, то есть на одной орбитали может быть не более двух электронов с различными спинами (спаренных электронов). Каждый подуровень содержит 2l + 1 орбитали, на которых размещаются не более 2(2l + 1) электронов. Отсюда следует, что емкость s-орбиталей – 2, p-орбиталей – 6, d-орбиталей – 10 и f-орбиталей – 14 электронов. Если число электронов при заданном l просуммировать от 0 до n – 1, то получим формулу Бора–Бьюри, определяющую общее число электронов на уровне с заданным n:




Эта формула не учитывает межэлектронное взаимодействие и перестает выполняться при n ≥ 3.

Орбитали с одинаковыми энергиями (вырожденные) заполняются в соответствии с правилом Гунда: наименьшей энергией обладает электронная конфигурация с максимальным спином. Это означает, что если на p-орбитали три электрона, то они располагаются так : , и суммарный спин S = 3/2, а не так : , S = 1/2.

Правило Клечковского (также Правило n+l; также используется название правило Маделунга) — эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах.
Заполнение электронами орбиталей в атоме происходит в порядке возрастания суммы главного и орбитального квантовых чисел . При одинаковой сумме раньше заполняется орбиталь с меньшим значением .
Многоэлектронные атомы
Точно так же, как и в атоме водорода, в более сложных атомах электроны могут двигаться вокруг ядра только по определенным избранным орбитам. Различные экспериментальные данные указывают, что возможные орбиты электронов в атоме группируются в систему оболочек. Грубо схематически можно представить себе эти оболочки в виде концентрических сфер, окружающих ядро (рис. 368). Каждая из оболочек содержит определенное число орбит, на каждой из которых может находиться только один электрон. Оболочка наименьшего радиуса, называемая K-оболочкой, содержит две орбиты. На второй оболочке — L-оболочке — имеется восемь орбит. Столько же орбит на следующей оболочке — третьей. Далее идет четвертая оболочка с 18 орбитами и т. Д



4.
Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[1] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.
Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон:
Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.
Теория строения атомов объясняет периодическое изменение свойств элементов. Возрастание положительных зарядов атомных ядер от 1 до 107 обусловливает периодическое повторение строения внешнего энергетического уровня. А поскольку свойства элементов в основном зависят от числа электронов на внешнем уровне, то и они периодически повторяются. В этом — физический смысл периодического закона.
Период - это горизонтальный ряд элементов расположенных в порядке возрастания зарядов ядер атомов. Номер периода – арабская цифра слева - показывает число энергетических уровней в атомах элементов относящихся к данному периоду на которых находятся электроны атома. В этом заключается физический смыл номера периода. Первые три периода малые остальные большие (4,5,6 и 7 не завершенный) состоят из двух горизонтальных рядов.
Во всех периодах с возрастанием заряда ядер атомов наблюдается ослабление металлических и восстановительных свойств атомов элементов и усиление неметаллических и окислительных свойств атомов элементов. Легче отдают электроны атомы щелочных металлов имеющие по одному валентному электрону труднее всего атомы благородных газов, обладающих замкнутой электронной оболочкой.
В малых периодах переход от щелочного металла к инертному элементу происходит через 8 элементов – быстрое уменьшение атомных радиусов, а в больших периодах через 18 и 32 элементов – медленное уменьшение атомных радиусов, по этому в больших периодах металлические свойства элементов ослабляются медленнее чем в малых периодах.
Группа – это вертикальный ряд элементов атомы которых имеют одинаковое число валентных электронов. Валентные это электроны, за счет которых атомы соединяются между собой, образуя молекулы. Номер группы – римская цифра вверху –показывает число валентных электронов в атоме. В этом заключается физический смысл номера группы. В периодической системе элементов 8 групп состоящих из подгрупп. Главные подгруппы содержат элементы малых и больших периодов Подгруппа А. Побочные подгруппы содержат элементы только больших периодов Подгруппа Б. С увеличением заряда ядра металлические и восстановительные свойства возрастают.
5.


Окислительно-восстановительные реакции.

Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.
Окисление — это процесс отдачи электронов атомом, молекулой или ионом.
Восстановление — это процесс присоединения электронов атомом, молекулой или ионом.
Окислителем является атом, молекула или ион, принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.
Электроотрицательность — это способность атома притягивать к себе валентные электроны других атомов. Электроотрицательность (ЭО) не может быть измерена и выражена в единицах каких-либо физических величин, поэтому для количественного определения ЭО предложены несколько шкал, наибольшее признание и распространение из которых получила шкала относительных ЭО, разработанная Л. Полингом.
По шкале Полинга ЭО фтора (наиболее электроотрицательного из всех элементов) условно принята равной 4,0;на втором месте находится кислород, на третьем — азот и хлор. Водород и типичные неметаллы находятся в центре шкалы; значения их ЭО близки к 2. Большинство металлов имеют значения ЭО, приблизительно равные 1,7 или меньше. ЭО является безразмерной величиной.
Шкала ЭО Полинга в общих чертах напоминает периодическую систему элементов. Эта шкала позволяет дать оценку степени ионностй (полярности) связи. Для этого используют зависимость между разностью ЭО и степенью ионности связи.
Чем больше разность ЭО, тем больше степень ионности. Разность ЭО, равная 1,7, соответствует 50%-ному ионному характеру связей, поэтому связи с разностью ЭО больше 1,7 могут считаться ионными, связи с меньшей разностью относят к ковалентным полярным.
Энергия ионизации. Энергия ионизации — это энергия, необходимая для отрыва наиболее слабо связанного электрона от атома. Она обычно выражается в электрон-вольтах. При отрыве электрона от атома образуется соответствующий катион.
Энергия ионизации для элементов одного периода возрастает слева направо с возрастанием заряда ядра. В подгруппе она уменьшается сверху вниз вследствие увеличения расстояния электрона от ядра.
Энергия ионизации связана с химическими свойствами элементов. Так, щелочные металлы, имеющие небольшие энергии ионизации, обладают ярко выраженными металлическими свойствами. Химическая инертность благородных газов связана с их высокими значениями энергии ионизации.
Сродство к электрону. Атомы могут не только отдавать, но и присоединять электроны. При этом образуется соответствующий анион. Энергия, которая выделяется при присоединении к атому одного электрона, называется сродством к электрону. Обычно сродство к электрону, как и энергия ионизации, выражается в электрон-вольтах. Значения сродства к электрону известны не для всех элементов; измерять их весьма трудно. Наиболее велики они у галогенов, имеющих на внешнем уровне по 7 электронов. Это говорит об усилении неметаллических свойств элементов по мере приближения к концу периода.

6.
Изменение свойств атомов по периодам и группам ПСЭ
С возрастанием порядкового номера элемента в периоде уменьшаются металлические свойства элементов и увеличиваются неметаллические, кроме этого, в периодах (малых) валентность элементов в соединениях с кислородом возрастает от 1 до 7, слева направо. Эти явления объясняются строением атомов:

С увеличением порядкового номера в периоде постепенно заполняются электронами внешние энергетические уровни, количество электронов на последнем уровне соответствует номеру группы и высшей валентности в соединениях с ки-слородом.

С увеличением порядкового номера в периоде увеличивается заряд ядра, что вызывает увеличение сил притяжения электронов к ядру В результате радиусы атомов уменьшаются, поэтому способность атомов отдавать электроны (металлические свойства) постепенно ослабевает и последние элементы периодов являются типичными неметаллами.

В главных подгруппах с возрастанием порядкового номера увеличиваются металлические свойства элементов и умень-шаются неметаллические. Это объясняется тем, что при одинаковом заряде ядра число заполненных энергетических уровней возрастает, значит увеличивается радиус атома, притяжение электронов к ядру ослабевает, а металлические свойства (способность отдавать электрон) увеличиваются.


7.

Химическая связь, взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атома показывает число связей, образуемых данным атомом с соседними атомами.
Энергия связи. Существенной характеристикой химической связи является ее прочность. Для оценки прочности связей обычно пользуются понятием энергии связей.
Энергия связи — это работа, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества.
Ионная связь. Ионная связь — это электростатическое взаимодействие между ионами с зарядами противоположного знака.
Коссель предположил, что ионная связь образуется в результате полного переноса одного или нескольких электронов от одного атома к другому. Такой тип связи возможен только между атомами, которые резко отличаются по свойствам. Например, элементы I и II групп периодической системы (типичные металлы) непосредственно соединяются с элементами VI и VII групп (типичными неметаллами). В качестве примеров веществ с ионной связью можно назвать MgS, NaCl, А2O3. Такие вещества при обычных условиях являются твердыми, имеют высокие температуры плавления и кипения, их расплавы и растворы проводят электрический ток.
Валентность элементов в соединениях с ионными связями очень часто характеризуют степенью окисления, которая, в свою очередь, соответствует величине заряда иона элемента в данном соединении.
Использование понятия степени окисления для атомов элементов, образующих другие виды химической связи, не всегда корректно и требует большой осторожности.
Ковалентная связь. Известно, что неметаллы взаимодействуют друг с другом. Рассмотрим образование простейшей молекулы Н2.
Представим себе, что мы имеем два отдельных изолированных атома водорода Н и Н". При сближении этих атомов между собой силы электростатического взаимодействия — силы притяжения электрона атома Н к ядру атома Н" и электрона атома Н" к ядру атома Н — будут возрастать: атомы начнут притягиваться друг к другу. Однако одновременно будут возрастать и силы отталкивания между одноименно заряженными ядрами атомов и между электронами этих атомов. Это приведет к тому, что атомы смогут сблизиться между собой настолько, что силы притяжения будут полностью уравновешены силами отталкивания. Расчет этого расстояния (длины ковалентной связи) показывает, что атомы сблизятся настолько, что электронные оболочки, участвующие в образовании связи, начнут перекрываться между собой. Это, в свою очередь, приведет к тому, что электрон, двигавшийся ранее в поле притяжения только одного ядра, получит возможность перемещаться и в поле притяжения другого ядра. Таким образом, в какой-то момент времени то вокруг одного, то вокруг другого атома будет возникать заполненная оболочка благородного газа (такой процесс может происходить только с электронами, обладающими противоположно направленными проекциями спина). При этом возникает общая пара электронов, одновременно принадлежащая обоим атомам.
Область перекрытия между электронными оболочками имеет повышенную электронную плотность, которая уменьшает отталкивание между ядрами и способствует образованию ковалентной связи.
Таким образом, связь, осуществляемая за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам, называется ковалентной.
Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества – интерметаллические соединения (AlCr2, Ca2Cu, Cu5Zn8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.
Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях,
когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:
H—O—H ••• OH2, H—O—H ••• NH3, H—O—H ••• F—H, H—F ••• H—F.
Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

8.


Ковалентная связь. Метод валентных связей
В 1916 г. американский ученый Льюис высказал предположение о том, что химическая связь * образуется за счет обобществления двух электронов. При этом электронная оболочка атома стремится по строению к электронной оболочке благородного газа. В дальнейшем эти предположения послужили основой для развития метода валентных связей. В 1927 г. Гайтлером и Лондоном был выполнен теоретический расчет энергии двух атомов водорода в зависимости от расстояния между ними. Оказалось, что результаты расчета зависят от того, одинаковы или противоположны по знаку спины * взаимодействующих электронов. При совпадающем направлении спинов сближение атомов приводит к непрерывному возрастанию энергии системы. При противоположно направленных спинах на энергетической кривой имеется минимум, т.е. образуется устойчивая система – молекула водорода Н2 (рисунок 3.4).



Рисунок 3.4 – Зависимость энергии от расстояния между атомами водорода при однонаправленных и противоположно направленных спинах.








Межъядерное расстояние r0, соответствующее минимуму, называется длиной связи, а энергия связи равна глубине потенциальной ямы E0–E1, где Е0 – энергия двух невзаимодействующих атомов, находящихся на бесконечном расстоянии друг от друга.
Образование химической связи между атомами водорода является результатом взаимопроникновения (перекрывания) электронных облаков. Вследствие этого перекрывания плотность отрицательного заряда в межъядерном пространстве возрастает, и положительно заряженные ядра притягиваются к этой области. Такая химическая связь называется ковалентной.
Представления о механизме образования молекулы водорода были распространены на более сложные молекулы. Разработанная на этой основе теория химической связи получила название метода валентных связей (метод ВС). В основе метода ВС лежат следующие положения: 1) Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.
2) Ковалентная связь тем прочнее, чем в большей степени перекрываются электронные облака.
Комбинации двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем. Примеры построения валентных схем:
В валентных схемах наиболее наглядно воплощены представления Льюиса об образовании химической связи путем обобществления электронов с формированием электронной оболочки благородного газа: для водорода – из двух электронов (оболочка He), для азота – из восьми электронов (оболочка Ne).

9.


Свойства ковалентной связи: насыщаемость, направленность и поляризуемость.

Насыщаемость ковалентной связи обусловлена ограниченными валентными возможностями атомов, т.е. их способностью к образованию строго определенного числа связей, которое обычно лежит в пределах от 1 до 6. Общее число валентных орбиталей в атоме, т.е. тех, которые могут быть использованы для образования химических связей, определяет максимально возможную валентность элемента. Число уже использованных для этого орбиталей определяет валентность элемента в данном соединении.
Направленность ковалентной связи является результатом стремления атомов к образованию наиболее прочной связи за счет возможно большей электронной плотности между ядрами. Это достигается при такой пространственной направленности перекрывания электронных облаков, которая совпадает с их собственной. Исключение составляют s-электронные облака, поскольку их сферическая форма делает все направления равноценными. Для p- и d-электронных облаков перекрывание осуществляется вдоль оси, по которой они вытянуты, а образующаяся при этом связь называется s-связью. s-Связь имеет осевую симметрию, и оба атома могут вращаться вдоль линии связи, т.е. той воображаемой линии, которая проходит через ядра химически связанных атомов.
После образования между двумя атомами s-связи для остальных электронных облаков той же формы и с тем же главным квантовым числом * остается только возможность бокового перекрывания по обе стороны от линии связи. В результате образуется p-связь. Она менее прочна, чем s-связь: перекрывание происходит диффузными боковыми частями орбиталей. Каждая кратная связь (например, двойная или тройная) всегда содержит только одну s-связь. Число s-связей, которые образует центральный атом в сложных молекулах или ионах, определяет для него значение координационного числа. Например, в молекуле NH3 и ионе NH4+ для атома азота оно равно трем и четырем. Образование s-связей фиксирует пространственное положение атомов относительно друг друга, поэтому число s-связей и углы между линиями связи, которые называются валентными углами, определяют пространственную геометрическую конфигурацию молекул.
При оценке степени перекрывания электронных облаков следует учитывать знаки волновых функций * электронов. При перекрывании облаков с одинаковыми знаками волновых функций электронная плотность в пространстве между ядрами возрастает. В этом случае происходит положительное перекрывание, приводящее к взаимному притяжению ядер. Если знаки волновых функций противоположны, то плотность электронного облака уменьшается (отрицательное перекрывание), что приводит к взаимному отталкиванию ядер.
Поляризуемость рассматривают на основе представлений о том, что ковалентная связь может быть неполярной (чисто ковалентной) или полярной *.
Важными характеристиками химической связи являются также ее длина и кратность. Длина связи определяется расстоянием между ядрами связанных атомов в молекуле. Как правило, длина химической связи меньше, чем сумма радиусов атомов, за счет перекрывания электронных облаков. Кратность связи определяется количеством электронных пар, связывающих два атома, например:

этан H3C–CH3 одинарная связь (s-связь)

этилен H2C=CH2 двойная связь (одна s-связь и одна p-связь)

ацетилен HCºCH тройная связь (одна s-связь и две p-связи).
С увеличением кратности возрастает энергия связи, однако это возрастание не пропорционально кратности, т.к. p-связи менее прочны, чем s-связь.

10.


Метод гибридизации орбиталей исходит из предположения, что при образовании молекул вместо исходных s-, р-, d-,f- орбиталей (облаков) образуются такие равноценные «смешанные» или гибридные электронные облака, которые вытянуты по направлению к соседним атомам, благодаря чему достигается более полное их перекрывание с электронными облаками других атомов. На гибридизацию затрачивается энергия, за то она окупается более полным перекрыванием. Получается более прочная молекула. Затраченная на гибридизацию энергия окупается энергией, выделяющейся при образовании связи. Пример –молекула метана.В результате перекрывания четырех гибридных sр3 орбиталей атома углерода и 4 s орбиталей 4-х атомов водорода, образуется тетраэдрическая модель молекулы метана с четырьмя σ связями, под углом 1090. Если в молекуле гибридизуется 3-р орбитали, то sр2 гибридизация – молекула этилена, если 2 орбитали sр – гибридизция (ацетилен). У элементов 3 и последующих периодов в образовании гибридных облаков участвуют и d-электроны. В этом случае образуются 6 равноценных гибридных облака, вытянутых к вершинам октаэдра sр3 d2-гибридизация. Такую гибридизацию имеет центральный атом комплексного иона. Этим объясняется их октаэдрическая структура.
Ковалентная связь обладает направленностью. Область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам.
Характер распределения электронов по молекулярным орбиталям позволяет объяснить магнитные свойства частиц. Молекулы, суммарный спин которых равен нулю, проявляют диамагнитные свойства, т.е. во внешнем магнитном поле их собственные магнитные моменты ориентируются против направления поля. Молекулы, суммарный спин которых отличен от нуля, проявляют парамагнитные свойства, т.е. во внешнем магнитном поле их собственные магнитные моменты ориентируются в направлении поля. Таким образом молекула Н2 диамагнитна.
Геометрическая форма молекул зависит от направленности химической связи. Ядра атомов молекул имеющих sр-гибридизацию атомных орбиталей расположены в одной плоскости, sр2 –направлены к вершинам треугольника, sр3 – к верщинам тетраэдра

11.


Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na 1s2 2s2 2p 6 3s1; 17 Cl 1s2 2s2 2p6 Зs2 3р5 Как это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. — l е —> Na+ ион натрия, устойчивая восьмиэлектронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е --> .Cl - ион хлора, устойчивая восьмиэлектронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.
Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу), то общая электронная пара полностью переходит к атому с большей ЭО. Результатом этого является образование соединения противоположно заряженных ионов:
Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Вернее, такой взгляд удобен. На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер. В то же время связь сложных молекулярных ионов часто может считаться чисто ионной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.
Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности частей молекулы. При этом диполи растворителя притягиваются к заряженным концам молекулы, и, в результате Броуновского движения, «растаскивают» молекулу вещества на части и окружают их, не давая соединиться вновь. В итоге получаются ионы окружённые диполями растворителя.
При растворении подобных соединений, как правило, выделяется энергия, так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион. Исключения составляют многие соли азотной кислоты (нитраты), которые при растворении поглощают тепло (растворы охлаждаются). Последний факт объясняется на основе законов, которые рассматриваются в физической химии.

12.

Классификация комплексных соединений

Большое многообразие комплексных соединений и их свойств не позволяет создать единую классификацию. Однако можно группировать вещества по некоторым отдельным признакам.

1) По составу.


2) По типу координируемых лигандов.

а) Аквакомплексы – это комплексные катионы, в которых лигандами являются молекулы H2O. Их образуют катионы металлов со степенью окисления +2 и больше, причем способность к образованию аквакомплексов у металлов одной группы периодической системы уменьшается сверху вниз.
Примеры аквакомплексов:
[Al(H2O)6]Cl3, [Cr(H2O)6](NO3)3.

б)Гидроксокомплексы – это комплексные анионы, в которых лигандами являются гидроксид-ионы OH–. Комплексообразователями являются металлы, склонные к проявлению амфотерных свойств – Be, Zn, Al, Cr.
Например: Na[Al(OH)4], Ba[Zn(OH)4].

в) Аммиакаты – это комплексные катионы, в которых лигандами являются молекулы NH3. Комплексообразователями являются d-элементы.
Например: [Cu(NH3)4]SO4, [Ag(NH3)2]Cl.

г) Ацидокомплексы – это комплексные анионы, в которых лигандами являются анионы неорганических и органических кислот.
Например: K3[Al(C2O4)3], Na2[Zn(CN)4], K4[Fe(CN)6].

3) По заряду внутренней сферы.



Природа химической связи в комплексных соединениях
Во внутренней сфере между комплексообразователем и лигандами существуют ковалентные связи, образованные в том числе и по донорно-акцепторному механизму. Для образования таких связей необходимо наличие свободных орбиталей у одних частиц (имеются у комплексообразователя) и неподеленных электронных пар у других частиц (лиганды). Роль донора (поставщика электронов) играет лиганд, а акцептором, принимающим электроны, является комплексообразователь. Донорно-акцепторная связь возникает как результат перекрывания свободных валентных орбиталей комплексообразователя с заполненными орбиталями донора.

Между внешней и внутренней сферой существует ионная связь. Приведем пример.
Электронное строение атома бериллия:

Электронное строение атома бериллия в возбужденном состоянии:

Электронное строение атома бериллия в комплексном ионе [BeF4]2–:

Пунктирными стрелками показаны электроны фтора; две связи из четырех образованы по донорно-акцепторному механизму. В данном случае атом Be является акцептором, а ионы фтора – донорами, их свободные электронные пары заполняют гибридизованные орбитали (sp3-гибридизация).

13



Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

Природа водородной связи
Часто водородную связь рассматривают как электростатическое взаимодействие, усиленное небольшим размером водорода, которое разрешает близость взаимодействующих диполей. Тогда об этом говорят как о разновидности донорно-акцепторной связи, невалентном взаимодействии между атомом водорода H, ковалентно связанным с атомом A группы A-H молекулы RA-H и электроотрицательным атомом B другой молекулы (или функциональной группы той же молекулы) BR. Результатом таких взаимодействий являются комплексы RA-H•••BR различной степени стабильности, в которых атом водорода выступает в роли «моста», связывающего фрагменты RA и BR.
Особенностями водородной связи, по которым её выделяют в отдельный вид, является её не очень высокая прочность[2], её распространенность и важность, особенно в органических соединениях[3], а также некоторые побочные эффекты, связанные с малыми размерами и отсутствием дополнительных электронов у водорода.
В настоящее время в рамках теории молекулярных орбиталей водородная связь рассматривается как частный случай ковалентной с делокализацией электронной плотности по цепи атомов и образованием трёхцентровых четырёхэлектронных связей (например, -H•••[F-H•••F]-).
Свойства
Энергия водородной связи значительно меньше энергии обычной ковалентной связи (не превышает 40 кДж/моль). Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, то есть их объединение в димеры или полимеры. Именно ассоциация молекул служит причиной аномально высоких температур плавления и кипения таких веществ, как фтороводород, вода, аммиак.
Связь этого типа, хотя и слабее ионной и ковалентной связей, тем не менее играет очень важную роль во внутри- и межмолекулярных взаимодействиях. Водородные связи во многом обусловливают физические свойства воды и многих органических жидкостей (спирты, карбоновые кислоты, амиды карбоновых кислот, сложные эфиры).
Прочность водородной связи (энтальпия образования комплекса) зависит от полярности комплекса и колеблется от ~ 6 кДж/моль для комплексов молекул галогеноводородов с инертными газами до 160 кДж/моль для ион-молекулярных комплексов (AHB)±; так, для комплекса (H2O•H•OH2)+ образованного H2O и H3O+ — 132 кДж/моль в газовой фазе.
Водородная связь в воде
Механизм Гротгуса
Аномально высокая теплоёмкость воды, а также теплопроводность многоатомных спиртов обеспечивается многочисленными водородными связями. Одна молекула воды может образовать до четырёх классических водородных связей с соседями (с учётом бифуркатных Н-связей до 5-6).
Водородные связи повышают температуру кипения, вязкость и поверхностное натяжение жидкостей. Водородные связи ответственны за многие другие уникальные свойства воды.
Водные кластеры
Водородная связь между молекулами воды обозначена чёрными линиями. Жёлтые линии обозначают ковалентную связь, которая удерживает вместе атомы кислорода (красный) и водорода (серый).
Основная статья: Водный кластер
Согласно современным представлениям, наличие водородных связей между молекулами воды приводит к возникновению так называемых водных кластеров или комплексов. Простейшим примером такого кластера может служить димер воды:

Энергия водородной связи в димере воды составляет 0,2 эВ (≈ 5 ккал/моль), что всего на порядок больше, чем характерная энергия теплового движения при температуре 300 К. В то же время энергия ковалентной O-H связи в 200 раз больше тепловой энергии. Таким образом, водородные связи относительно слабы и неустойчивы: предполагается, что они могут легко возникать и исчезать в результате тепловых флуктуаций. Это, в частности, приводит к тому, что вода должна рассматриваться не как «простая», а как «связанная жидкость»: вода представляется как сеть молекул H2O, соединённых водородными связями[4].
[править]
Водородная связь в нуклеиновых кислотах и белках
Водородная связь в значительной мере определяет свойства и таких биологически важных веществ, как белки и нуклеиновые кислоты. В частности, элементы вторичной структуры (например, α-спирали, β-складки) и третичной структуры в молекулах белков, РНК и ДНК стабилизированы водородными связями. В этих макромолекулах, водородные связи сцепляют части той же самой макромолекулы, заставляя её сворачиваться в определенную форму. Например, двойная спиральная структура ДНК, определяется в значительной степени наличием водородных связей, сцепляющих пары нуклеотидов, которые связывают одну комплементарную нить с другой.
Водородная связь в полимерах
Много полимеров усилены водородными связями в их главных цепях. Среди синтетических полимеров самый известный пример - нейлон, где водородные связи играют главную роль в кристаллизации материала. Водородные связи также важны в структуре полученных искусственно полимеров (например, целлюлозы) и в многих различных формах в природе, таких как древесина, хлопок и лён.


13.


Вандерваальсовы силы (Van-der-Vaalse force) - слабое взаимодействие между нейтральными молекулами на расстояниях, значительно превосходящих их размеры. Или: это силы взаимодействия, возникающие между электрически нейтральными атомами и молекулами и имеющие электрическую природу.( слабые силы взаимного притяжения, способствующие сцеплению между соседними АТОМАМИ или МОЛЕКУЛАМИ. Названы по имени Яна ВАН ДЕР ВААЛЬСА, который исследовал это явление в XIX в. Силы вызваны распространением электронов в соседние атомы или молекулы.)

15
Агрегатное состояние
Агрега́тное состоя́ние — состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.
Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляют плазму. Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе — Эйнштейна.
Изменения агрегатного состояния это термодинамические процессы, называемые фазовыми переходами. Выделяют следующие их разновидности: из твёрдого в жидкое — плавление; из жидкого в газообразное — испарение и кипение; из твёрдого в газообразное — сублимация; из газообразного в жидкое или твёрдое — конденсация; из жидкого в твёрдое — кристаллизация. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию.
Определения агрегатных состояний не всегда являются строгими. Так, существуют аморфные тела, сохраняющие структуру жидкости и обладающие небольшой текучестью и способностью сохранять форму; жидкие кристаллы текучи, но при этом обладают некоторыми свойствами твёрдых тел, в частности, могут поляризовать проходящее через них электромагнитное излучение.
Твёрдое тело
Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.
Жидкость
Состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.
Газ
Состояние, характеризующееся хорошей сжимаемостью, отсутствием способности сохранять как объём, так и форму. Газ стремится занять весь объём, ему предоставленный. Атомы или молекулы газа ведут себя относительно свободно, расстояния между ними гораздо больше их размеров.
Плазма
Часто причисляемая к агрегатным состояниям вещества плазма отличается от газа большой степенью ионизации атомов. Большая часть барионного вещества (по массе ок. 99,9 %) во Вселенной находится в состоянии плазмы.[2]
Сверхкритический флюид
Возникает при одновременном повышении температуры и давления до критической точки, в которой плотность газа сравнивается с плотностью жидкости; при этом исчезает граница между жидкой и газообразной фазами. Сверхкритический флюид отличается исключительно высокой растворяющей способностью.
Конденсат Бозе — Эйнштейна
Получается в результате охлаждения бозе-газа до температур, близких к абсолютному нулю. В результате этого часть атомов оказывается в состоянии со строго нулевой энергией (то есть в низшем из возможных квантовом состоянии). Конденсат Бозе — Эйнштейна проявляет ряд квантовых свойств, таких как сверхтекучесть и резонанс Фишбаха.



16.
Характерной особенностью аморфных тел является их изотропность, т. е. независимость всех физических свойств (механических, оптических и т. д.) от направления внешнего воздействия. Молекулы и атомы в изотропных твердых телах располагаются хаотично, образуя лишь небольшие локальные группы, содержащие несколько частиц (ближний порядок). По своей структуре аморфные тела очень близки к жидкостям (см. §3.5). Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т. д. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур.
В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl (рис. 3.6.1). Такие кристаллы называются ионными.

17.
Кристаллическая решётка
Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.
Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера, графит и алмаз, которые являются гексагональной и кубической модификациями углерода, среди сложных веществ — кварц, тридимит икристобалит представляют собой различные модификации диоксида кремния.


18.
Виды кристаллов
Следует разделить идеальный и реальный кристалл.
Идеальный кристалл
Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.
Реальный кристалл
Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство — закономерное положение атомов в кристаллической решётке.
Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

19.
Дефектами кристалла называют всякое нарушение трансляционной симметрии кристалла — идеальной периодичности кристаллической решётки. Различают несколько разновидностей дефектов поразмерности. А именно, бывают нульмерные (точечные), одномерные (линейные), двумерные (плоские) и трёхмерные (объемные) дефекты.

20.
Атомно-молекулярное учение — совокупность законов и аксиом описывающих все вещества как набор молекул, состоящих из атомов. Атомно-молекулярное учение обосновал и развил русскийученый М.В.Ломоносов (корпускулярно-кинетическая теория).[1]

21.
Химия — это наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также о фундаментальных законах, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается в основном изучением взаимодействий между атомами и молекулами, полученными в результате таких взаимодействий. Моль — мера количества вещества, содержащая Число Авогадро (NA ? 6,02?1023</sup) любых структурных частиц. ( NA-кол-во атомов в 12 граммах углерода 12C.) Молярная масса — (г/моль) масса одного атома элемента


22.
Закон Авога?дро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул». Было сформулировано ещё в 1811 году Амедео Авогадро (1776—1856), профессором физики в Турине. Закон кратных отношений — один из стехиометрических законов химии: если два вещества (простых или сложных) образуют друг с другом более одного соединения, то массы одного вещества, приходящиеся на одну и ту же массу другого вещества, относятся как целые числа, обычно небольшие. Закон постоянства состава (Ж.Л. Пруст, 1801—1808гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии.
Закон постоянства состава не выполняется для бертоллидов (соединений переменного состава). Однако условно для простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II) записывают в виде FeO (вместо более точной формулы Fe1-xO). Закон сохранения массы — исторический закон физики, согласно которому масса как мера количества вещества сохраняется при всех природных процессах, то есть несотворима и неуничтожима. В метафизической форме закон известен с древнейших времён. Позднее появилась количественная формулировка, где в качестве меры массы объекта вначале использовался его вес.
В настоящее время известен ряд условий, при которых данный закон нарушается — например, при радиоактивном распаде совокупная масса вещества уменьшается. В современной физике закон сохранения массы является частным случаем закона сохранения энергии, и он выполняется только в консервативных физических системах, то есть при отсутствии энергообмена с внешней средой.





23.
Деление веществ на классы достаточно условно. Например, мы знаем, что кислоты подразделяются на одно-, двух- и трехосновные, но их обычно не выделяют в отдельные классы соединений. Точно также не являются отдельными классами сильные и слабые кислоты. Это же справедливо и для оснований.
Между классами существует важная связь, которую называют генетической ("генезиз" по-гречески обозначает "происхождение"). Эта связь заключается в том, что из веществ одного класса можно получить вещества других классов.
Существует два основных пути генетических связей между веществами: один из них начинается металлами, другой – неметаллами.
Например, сульфат кальция CaSO4 можно получить либо из металла кальция, либо другим путем – из неметалла серы

С другой стороны, из соли можно опять прийти к металлу и неметаллу:

Одновременно существуют и другие пути взаимопревращений соединений разных классов. Таким образом, генетические связи между разными классами соединений очень многообразны.






24.
Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m : w(B)= m(B) / m.
Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества – CaCl2 в воде равна 0,06 или 6%. Это означает,что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г.
Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.
C(B) = n(B) / V = m(B) / (M(B) • V), где М(B) - молярная масса растворенного вещества г/моль.
Молярная концентрация измеряется в моль/л и обозначается "M". Например, 2 M NaOH - двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).
Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют моляльностью раствора.
Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.
Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода. Эоснования = Моснования / число замещаемых в реакции гидроксильных групп
Экислоты = Мкислоты / число замещаемых в реакции атомов водорода
Эсоли = Мсоли / произведение числа катионов на его заряд




25.
Способы выражения концентрации растворов.
1) Массовая доля раствора ? (х). Выражается отношением массы растворенного вещества m(х) к массе раствора.
Является величиной безразмерной или выражается в процентах:
Например, 15%-ный раствор: массовая доля ? (х) = 0,15
2) Молярная концентрация раствора С(х). Выражается отношением количества растворенного вещества n(x) к объему раствора, выраженному в литрах.
Т.к. количество вещества n(x) выражается отношением массы вещества m(x) к его молярной массе M(x), то молярную концентрацию раствора удобно выразить как


26.
Электролиты - это вещества, которые в растворе и расплаве проводят электрический ток.
К электролитам относятся:1. щёлочи
2. кислоты
3. растворимые соли
Основные положения ТЭД
1. Электролиты в растворах и расплавах распадаются на ионы "+" и "-"
положительные ионы - катионы
отрицательные ионы - анионы
2.Ионы отличаются от атомов стронием и свойствами.
3. Ионы в растворах и расплавах движутся хаотически, но если мы приложим напряжение, то ионы будут двигатся
катионы -> катоду
анионы -> аноду




27.
Электролиты. Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам.
Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить по их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы.
Электролитическая диссоциация. Кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации.
Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов — катионов и анионов.
Процесс диссоциации во всех случаях является обратимым, поэтому при написании уравнений реакции диссоциации необходимо применять знак обратимости « . Различные электролиты, согласно теории Аррениуса, диссоциируют на ионы в различной степени. Полнота распада зависит от природы электролита, его концентрации, природы растворителя, температуры.
Степень диссоциации. Степенью диссоциации а называется отношение числа молекул, распавшихся на ионы (n), к общему числу растворенных молекул (п):
Из этого выражения очевидно, что а может изменяться от 0 (диссоциации нет) до 1 (полная диссоциация). Степень диссоциации часто выражают в процентах. Степень диссоциации электролита может быть определена только экспериментальным путем, например по измерению температуры замерзания раствора, по электропроводности раствора и т. д.
Сильные и слабые электролиты. В зависимости от степени диссоциации различают электролиты сильные и слабые. Электролиты со степенью диссоциации больше 30% обычно называют сильными, со степенью диссоциации от 3 до 30% — средними, менее 3% — слабыми электролитами.
К сильным электролитам относятся почти все соли, некоторые кислоты (НСl, HBr, HI, НNО3, НсlO4, Н2SO4(разб.)) и некоторые основания (LiОН, NaOH, КОН, Са(ОН)2, Sr(OH)2, Ва(ОН)2). К слабым электролитам относится большинство кислот (особенно органических) и оснований.
Степень диссоциации как сильных, так и слабых электролитов зависит от концентрации раствора (степень диссоциации тем выше, чем более разбавлен раствор).
Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.
Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:
A K = A- + K+.
Поскольку диссоциация является обратимым равновесным процессом, то к этой реакции применим закон действующих масс, и можно определить константу равновесия как
, где К — константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита. Диапазон констант равновесия для разных реакций очень большой — от 10-16 до 1015. Например, высокое значение К для реакции означает, что если в раствор, содержащий ионы серебра Ag+, внести металлическую медь, то в момент достижения равновесия концентрация ионов меди [Cu2+] намного больше, чем квадрат концентрации ионов серебра [Ag+]2. Напротив, низкое значение К в реакции говорит о том, что к моменту достижения равновесия растворилось ничтожно малое количество иодида серебра AgI.
Если концентрации некоторых реагентов существенно не изменяются в процессе реакции, то они не записываются в выражение для константы равновесия (такие константы обозначаются К1).
Константы диссоциации малорастворимых солей и гидроксидов металлов называются произведением растворимости соответствующих веществ (обозначается ПР).
Для реакции диссоциации воды
выражение константы будет:
, а не
Объясняется это тем, что концентрация воды во время реакций в водных растворах изменяется очень незначительно. Поэтому принимается, что концентрация [Н2О] остается постоянной и вводится в константу равновесия.


28.
Реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков, газов и слабых электролитов.
Следовательно, реакции идут с образованием веществ с меньшей концентрацией ионов в растворе в соответствии с законом действующих масс. Скорость прямой реакции пропорциональна произведению концентраций ионов реагирующих компонентов, а скорость обратной реакции пропорциональна произведению концентраций ионов продуктов. Но при образовании газов, осадков и слабых электролитов ионы связываются (уходят из раствора) и скорость обратной реакции уменьшается.


29.
Гидро?лиз (от др.-греч. ???? — вода и ????? — разложение) — один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия.
Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»

Различают обратимый и необратимый гидролиз солей[1]:
? 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):
CO32? + H2O = HCO3? + OH?
Na2CO3 + Н2О = NaHCO3 + NaOH
(раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)
? 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):
Cu2+ + Н2О = CuOH+ + Н+
CuCl2 + Н2О = CuOHCl + HCl
(раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)
? 3. Гидролиз соли слабой кислоты и слабого основания:
2Al3+ + 3S2? + 6Н2О = 2Al(OH)3(осадок) + ЗН2S(газ)
Al2S3 + 6H2O = 2Al(OH)3 + 3H2S
(равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).
Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.
Степень гидролиза
Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается ? (или hгидр);
? = (cгидр/cобщ)•100 %
где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли.
Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.
Является количественной характеристикой гидролиза.

30.
ТЕОРИЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ.
После открытия кислорода, французскому химику Лавуазье удалось выяснить, что горение есть реакция соединения с кислородом. В соответствии латинским наименованием кислорода "oxigenium" реакции соединения с кислородом были названы окислением.

2Mg0 +O20=2Mg+2O-2

Обратный процесс полного или частичного отнятия кислорода от веществ называется восстановлением. При восстановлении оксида элемент, соединённый с кислородом, меняет своё состояние - образует простое вещество, т.е. восстанавливается.

Fe2+3O3-2+2Al0=Al2+3O3-2+2Fe0

Вы заметили, что в этих реакциях изменились степени окисления химических элементов. Химические реакции, в результате которых происходит изменение степеней окисления атомов химических элементов или ионов, образующих реагирующие вешества, называют окислительно-восстановительными реакциями.
В соответствиии с теорией электронного строения атома окисление и восстановление легко объясняется как процесс отдачи или присоединения электронов. В окислительно-восстановительных реакциях электроны не уходят из сферы реакции, а переносятся от одного элемента к другому.
Рассмотрим реакцию взаимодействия магния с кислородом.


Из схемы видно, что атом магния отдал 2 электрона атому кислорода, за счёт такого перехода химические элементы изменили степени окисления. Протекают два процесса. Процесс отдачи электронов и процесс их присоединения , которые называются соответственно окислением и восстановлением.
Вещества, участвующие в окислительно-восстановительных реакциях, и у которых изменились степени окисления, являются либо окислителямия,либо восстановителями.
Окислитель - это атомы, ионы или молекулы, которые принимают электроны.
Восстановитель - это атомы, ионы или молекулы, которые отдают электроны.
Из уравнения реакции видно, что магний является восстановителем, а кислород - окислителем.

32.
Окислительно-восстановительные свойства вещества и степени окисления входящих в него атомов
Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами. Минимальная степень окисления у атомов металлов равна 0, для неметаллов - (n–8) (где n- номер группы в периодической системе). Соединения, содержащие атомы элементов с промежуточной степенью окисления, могут быть и окислителями и восстановителями, в зависимости от партнера, с которым взаимодействуют и от условий реакции.
Важнейшие восстановители и окислители
Восстановители: Металлы,водород, уголь. Окись углерода (II) (CO). Сероводород (H2S); оксид серы (IV) (SO2); сернистая кислота H2SO3 и ее соли. Галогеноводородные кислоты и их соли. Катионы металлов в низших степенях окисления: SnCl2, FeCl2, MnSO4, Cr2(SO4)3. Азотистая кислота HNO2; аммиак NH3; гидразин NH2NH2; оксид азота(II) (NO). Катод при электролизе.
Окислтели: Галогены. Перманганат калия(KMnO4); манганат калия (K2MnO4); оксид марганца (IV) (MnO2). Дихромат калия (K2Cr2O7); хромат калия (K2CrO4). Азотная кислота (HNO3). Серная кислота (H2SO4) конц. Оксид меди(II) (CuO); оксид свинца(IV) (PbO2); оксид серебра (Ag2O);
пероксид водорода (H2O2). Хлорид железа(III) (FeCl3). Бертоллетова соль (KClO3). Анод при электролизе.
Степень окисления - это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна. Наиболее электроотрицательные элементы в соединении имеют отрицательные степени окисления, а атомы элементов с меньшей электроотрицательностью - положительные.
Степень окисления - формальное понятие; в ряде случаев степень окисления не совпадает с валентностью.
Реакции без и с изменением степени окисления
Существует два типа химических реакций:
A Реакции, в которых не изменяется степень окисления элементов:
Реакции присоединения SO2 + Na2O ® Na2SO3
Реакции разложения Cu(OH)2 –t°® CuO + H2O
Реакции обмена AgNO3 + KCl ® AgCl¯ + KNO3
NaOH + HNO3 ® NaNO3 + H2O
B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений:
2Mg0 + O20 ® 2Mg+2O-2
2KCl+5O3-2 –t°® 2KCl-1 + 3O20
2KI-1 + Cl20 ® 2KCl-1 + I20
Mn+4O2 + 4HCl-1 ® Mn+2Cl2 + Cl20 + 2H2O
Такие реакции называются окислительно - восстановительными.
В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:
Процесс присоединения электронов - восстановление: При восстановлении степень окисления понижается.
Атомы или ионы, которые в данной реакции присоединяют электроны являются окислителями, а которые отдают электроны - восстановителями.

33.
Окислительно-восстановительный потенциал (ОВП) является мерой химической активности элементов или их соединений в обратимых химических процессах, связанных с изменением заряда ионов в растворах.
В зависимости от значения ОВП различают несколько основных ситуаций, встречающихся в природных водах:
Окислительная. Характеризуется значениями Еh > + (100 - 150) мВ, присутствием в воде свободного кислорода, а также целого ряда элементов в высшей форме своей валентности (Fe3+, Mo6+, As5-, V5+, U6+, Sr4+, Cu2+, Pb2+). Ситуация, наиболее часто встречающаяся в поверхностных водах.
Переходная окислительно-восстановительная. Определяется величинами Еh от 0 до + 100 мВ, неустойчивым геохимическим режимом и переменным содержанием сероводорода и кислорода. В этих условиях протекает как слабое окисление, так и слабое восстановление целого ряда металлов;
Восстановительная. Характеризуется значениями Еh < 0. Типична для подземных вод, где присутствуют металлы низких степеней валентности (Fe2+, Mn2+, Mo4+, V4+, U4+), а также сероводород.
Направление окислительно-восстановительных реакций определяется выигрышем энергии Гиббса.
Направление окислительно-восстановительных реакций во многом зависит от среды.
Предвидеть направление окислительно-восстановительной реакции можно с некоторой уверенностью лишь в том случае, если активный окислитель реагирует с активным восстановителем
При определении направления окислительно-восстановительных реакций пользуются следующим правилом: реакции окисления-восстановления всегда идут в сторону образования более слабых окислителя и восстановителя, но не наоборот.




34.
Составление уравнений окислительно-восстановительных реакций
A .Электронный баланс - метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, в котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданное восстановителем равно числу электронов, получаемых окислителем.
Уравнение составляется в несколько стадий:
1. Записывают схему реакции.
KMnO4 + HCl ® KCl + MnCl2 + Cl2 + H2O
2. Проставляют степени окисления над знаками элементов, которые меняются.
KMn+7O4 + HCl-1 ® KCl + Mn+2Cl2 + Cl20 + H2O
3. Выделяют элементы, изменяющие степени окисления и определяют число электронов, приобретенных окислителем и отдаваемых восстановителем.
Mn+7 + 5ē ® Mn+2
2Cl-1 - 2ē ® Cl20
4. Уравнивают число приобретенных и отдаваемых электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления.
Mn+7 + 5ē ® Mn+2 2
2Cl-1 - 2ē ® Cl20 5
––––––––––––––––––––––––
2Mn+7 + 10Cl-1 ® 2Mn+2 + 5Cl20
5. Подбирают коэффициенты для всех остальных участников реакции.
2KMn+7O4 + 16HCl-1 ® 2KCl + 2Mn+2Cl2 + 5Cl20 + 8H2O
B. Электронно-ионный баланс (метод полуреакций) метод нахождения коэффициентов, в котором рассматривается обмен электронами между ионами в растворе с учетом характера среды:
2Cl1- – 2ē ® Cl20 5

MnO41- + 8H++ 5ē ® Mn2+ + 4H2O 2
7+ 2+

––––––––––––––––––––––––––––––––––––––
10Cl- + 2MnO41- + 16H+ ® 5Cl20 + 2Mn2+ + 8H2O
(для уравнивания ионной полуреакции используют H+, OH- или воду)

35.
Эквивалентом называют реальную или условную частицу вещества, которая в данной кислотно-основной реакции эквивалентна одному иону водорода или в данной окислительно-восстановительной реакции — одному электрону. Фактором эквивалентности служит число, обозначающее долю реальной частицы вещества, эквивалентной одному иону водорода в данной кислотно-основной реакции, или одному электрону в данной окислительно-восстановительной реакции. Фактор эквивалентности может быть равен или меньше единицы. Молярная масса эквивалента (ММЭ) вещества — масса одного моля эквивалента этого вещества, равная произведению фактора эквивалентности на его молярную массу. В соответствии с законом эквивалентов массы взаимодействующих без остатка веществ пропорциональны их эквивалентам.

36.
Эквивалентом элемента или вещества является такое ег количество в молях, которое соединяется с однм молем водорода или замещает то же количество атомов водорода в химических реакциях.
Масса одного эквивалента вещества (элемента), выраженная в граммах, называется молярной массой эквивалента вещества Мэ и выражается в г/моль. Молярная масса эквивалента элемента в соединении не является величиной постоянной,зависит от валентности элемента в данном соединении.
Частица Фактор эквивалентности Примеры
Элемент ,
где В(Э) – валентность элемента

Простое вещество ,
где n(Э) – число атомов элемента (индекс в химической формуле), В(Э) – валентность элемента fЭ(H2) = 1/(21) = 1/2;
fЭ(O2) = 1/(22) = 1/4;
fЭ(Cl2) = 1/(21) = 1/2;
fЭ(O3) = 1/(32) = 1/6
Оксид ,
где n(Э) – число атомов элемента (индекс в химической формуле оксида), В(Э) – валентность элемента fЭ(Cr2O3) = 1/(23) = 1/6;
fЭ(CrO) = 1/(12) = 1/2;
fЭ(H2O) = 1/(21) = 1/2;
fЭ(P2O5) = 1/(25) = 1/10
Кислота ,
где n(H+) – число отданных в ходе реакции ионов водорода (основность кислоты) fЭ(H2SO4) = 1/1 = 1 (основность равна 1)
или
fЭ(H2SO4) = 1/2
(основность равна 2)
Основание ,
где n(ОH–) – число отданных в ходе реакции гидроксид-ионов (кислотность основания) fЭ(Cu(OH)2) = 1/1 = 1 (кислотность равна 1) или
fЭ(Cu(OH)2) = 1/2
(кислотность равна 2)
Соль ,
где n(Ме) – число атомов металла (индекс в химической формуле соли), В(Ме) – валентность металла; n(А) – число кислотных остатков, В(А) – валентность кислотного остатка fЭ(Cr2(SO4)3) = 1/(23) = 1/6 (расчет по металлу) или
fЭ(Cr2(SO4)3) = 1/(32) = 1/6 (расчет по кислотному остатку)

Частица в окислительно-восстано-вительных реакциях ,
где – число электронов, участвующих в процессе окисления или восстановления Fe2+ + 2  Fe0
fЭ(Fe2+) =1/2;

MnO4– + 8H+ + 5   Mn2+ + 4H2O
fЭ(MnO4–) = 1/5
Ион ,
где z – заряд иона fЭ(SO42–) = 1/2
Современная формулировка закона: вещества реагируют и образуются согласно их эквивалентам. Все вещества в уравнении реакции связаны законом эквивалентов, поэтому:
э(реагента1) = … = э(реагентаn) = э(продукта1) = … = э(продуктаn)
Из закона эквивалентов следует, что массы (или объемы) реагирующих и образующихся веществ пропорциональны молярным массам (молярным объемам) их эквивалентов. Для любых двух веществ, связанных законом эквивалентов, можно записать:
или или ,
, – молярные объемы эквивалентов реагентов и (или) продуктов реакции, л/моль.


37.
Растворимость веществ. По растворимости в воде все вещества делятся на три группы: 1) хорошо растворимые, 2) малорастворимые и 3) практически нерастворимые. Последние называют также нерастворимыми веществами. Однако следует отметить, что абсолютно нерастворимых веществ нет. Если опустить в воду стеклянную палочку или кусочек золота или серебра, то они в ничтожно малых количествах все же растворяются в воде. Как известно, растворы серебра или золота в воде убивают микробов. Стекло, серебро, золото - это примеры практически нерастворимых в воде веществ (твердые вещества). К ним следует также отнести керосин, растительное масло (жидкие вещества), благородные газы (газообразные вещества).
Примером малорастворимых в воде веществ могут служить гипс, сульфат свинца (твердые вещества), диэтиловый эфир, бензол (жидкие вещества), метан, азот, кислород (газообразные вещества).
Многие вещества в воде растворяются весьма хорошо. Примером таких веществ могут служить сахар, медный купорос, гидроксид натрия (твердые вещества), спирт, ацетон (жидкие вещества), хлороводород, аммиак (газообразные вещества).
Из приведенных примеров следует, что растворимость прежде всего зависит от природы веществ. Кроме того, она зависит также от температуры и давления. Сам процесс растворения обусловлен взаимодействием частиц растворимого вещества и растворителя; это самопроизвольный процесс.
По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. С другой стороны, по относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.
Раствор, в котором данное вещество при данной температуре больше не растворяется, т. е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, — ненасыщенным.
Отношение массы вещества, образующего насыщенный раствор при данной температуре, к массе растворителя называют растворимостью этого вещества, или коэффициентом растворимости:


38.
Качественный анализ – раздел аналитической химии, посвященный установлению качественного состава веществ, то есть обнаружению элементов и образуемых ими ионов, входящих в состав и простых, и сложных веществ. Делают это с помощью химических реакций, характерных для данного катиона или аниона, позволяющих обнаружить их как в индивидуальных веществах, так и в смесях. Химические реакции, пригодные для качественного анализа, должны сопровождаться заметным внешним эффектом.
Это может быть
• выделение газа • изменение окраски раствора • выпадение осадка • растворение осадка • образование кристаллов характерной формы.
Результат качественного химического анализа - принятие решения о наличии или отсутствии искомого компонента в веществе объекта анализа.
• Химические методы качественного химического анализа объекта анализа – основаны на проведении химических реакций с реагентом, дающим визуально наблюдаемый эффект – выпадение осадка, изменение окраски объекта, выделение газа, окрашивание пламени горелки:
• ∆ T
• 1. Pb2+ + KI → PbI↓ + K+ → PbI↓ + K+
• Желт. желт.-золотист.
• осадок кристаллы
• 4. Окрашивание б/цв пламени ионами К+ и Ga3+ в бледно-фиолетовый цвет и ионами Na+ в желтый цвет
• -- темно-красный цвет ионами Sr2+
• -- кирпично-красный цвет ионами Ca2+
• -- кармино-красный (малиновый) цвет ионами лития, стронция
• --желто-зеленый цвет ионами Ba2+, молибдена
• -- зелено-голубой цвет ионами Cu2+
• -- зелёный цвет ионами бора
• -- изумрудно-зелёный цвет ионами таллия, теллура
• -- синий цвет ионами In3+ и Tl+, сурьмы, мышьяка, свинца, селена
• -- бледно-фиолетовый цвет ионами К+ -- фиолет.-синий цвет ионами цезия
• -- сине-фиолетовый цвет ионами рубидия
39.
Количественный анализ — совокупность методов аналитической химии для определения количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте.
• Результат количественного химического анализа – значение количества определяемого (искомого) компонента или его массы, отнесенное к единице массы или объёма вещества объекта анализа.
• w(А) = [m (А)/ mвещ]×100 ,%.
• Сm(А) = m(А)/Vм.к. ,г/дм3
• Цели количественного анализа
• Количественный анализ позволяет установить элементный и молекулярный состав исследуемого объекта или содержание отдельных его компонентов.
• В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементарный анализ, задача которого — установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.
40.
Гравиметрический анализ (весовой анализ) — важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и конечной стадией определения. Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Измерительным прибором служат аналитические весы. Результаты анализа выражают обычно в процентах. Гравиметрический анализ сыграл большую роль при становлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др., применяется при определении химического состава различных объектов (горных пород и минералов), при установлении качества сырья и готовой продукции и т. д.
• методы гравиметрии -- проводят химическую реакцию с реагентом, вступающим в химическую реакцию с определяемым компонентом в строго определенных соотношениях (стехиометрично), и имеется возможность точно измерить массу образующегося продукта реакции.
• Например, содержание сульфатов в породе может быть определено после соответствующей пробоподготовки методом гравиметрии, где использовано свойство сульфатов образовывать малорастворимое соединение с ионами Ва2+
• SO42- + ВаСl2 = ВаSO4↓ + 2Сl-
• Расчеты содержания неизвестного компонента производят на основе закона сохранения массы (количества) компонента при химических взаимодействиях.
• m(SO42-) =M(SO42-) m(ВаSO42-)/ M(ВаSO42-)
• Пример: Руды железные. Гравиметрический метод определения окиси кальция и окиси магния
Титриметрический анализ (титрование) — методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объема раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом.
Титриметрический анализ использует различные типы химических реакций:
 нейтрализации (кислотно-основное титрование) — нейтрализация — это реакции с изменением pH растворов.
 окисления-восстановления (перманганатометрия, иодометрия, хроматометрия) — реакции, которые происходят с изменением окислительно-восстановительных потенциалов в системе титрования.
 осаждения (аргентометрия) — реакции, протекающие с образованием малорастворимого соединения, при этом изменяются концентрации осаждаемых ионов в растворе.
 комплексообразования (комплексонометрия) — реакции, основанные на образовании прочных комплексных соединений ионов металлов (всех, кроме одновалентных) с комплексоном III (двунатриевой солью этилендиаминтетрауксусной кислоты), при этом изменяются концентрации ионов металлов в титруемом растворе.
 1) методы титриметрии:
 -- проводят химическую реакцию с точно определённым (косвенно измеренным) количеством реагента, вступающим в химическую реакцию с определяемым компонентом без побочных реакций, без остатка, в строго определенных соотношениях (стехиометрично).
 aA + bB = cC + dD
 Реакция может быть переписана в условных единицах – эквивалентах, для которых стехиометрические коэффициенты для всех участников реакции равны 1. В этом случае можно приравнять число частиц всех составляющих реакции друг другу:
 nэ(А) = nэ(В) = nэ(С) = nэ(D)
 - это запись закона эквивалентов или принципа эквивалентности.
 Тип применяемой химической реакции в титриметрии обусловлен химическими свойствами определяемого компонента. Условные частицы – эквиваленты устанавливаются для каждого типа химической реакции по своим правилам.
 Например, железо в руде может быть определено после соответствующей подготовки пробы методом перманганатометрии (окислительно-восстановительного титрования), где использованы окислительно-восстановительные свойства железа и марганца:
 5Fe2+ + MnO4- + 8H- =
 Расчеты содержания неизвестного компонента производят на основе закона эквивалентов:
nэ(Fe2+) = nэ(MnO4-) → Cэ (Fe2+)V(Fe2+) = Cэ(MnO4-)V(MnO4-)
Калориметрические методы применяются в настоящее время для надежного и точного пассивного неразрушающего анализа ядерных материалов, особенно плутония и трития.
Ниже приведены важные характеристики и преимущества калориметрического анализа:
- может быть исследован весь образец;
- анализ не зависит от геометрии образца (существенно только время достижения теплового равновесия);
- анализ не зависит от состава и распределения материала матрицы, включая концентрацию влаги;
- анализ не зависит от распределения ядерного материала в образце с учетом эффектов самоэкранирования образца.
- измерение электрического тока и потенциалов осуществляется с использованием эталонных материалов;
- калориметрический анализ применим для широкого круга форм материалов (включая металлы, сплавы, оксиды, смешанные оксиды, отходы и скрап). Не требуются представительные плутониевые стандарты;
- калориметрический анализ сравним по сходимости и точности с химическим анализом, если хорошо определен изотопный состав;
- калориметрический анализ позволяет создать законченную процедуру неразрушающего анализа, когда он дополнен высокоразрешающим гамма- спектрометрическим изотопным анализом.
Важным недостатком калориметрического анализа являются значительные временные затраты на его реализацию. Вообще методика является более точной, но менее быстрой и менее портативной, чем методики неразрушающего анализа, которые применимы для измерений ядерного материала.
41.
Электрохимические методы анализа — группа методов количественного химического анализа, основанные на использованииэлектролиза.
Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.
Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точкититрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).
К оптическим методам анализа относят физико-химические методы, основанные на взаимодействии электромагнитного излучения с веществом. Это взаимодействие приводит к различным энергетическим переходам, которые регистрируются экспериментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения. Оптические методы включают в себя большую группу спектральных методов анализа.
В методах атомной спектроскопии мы имеем дело с узкими линейчатыми спектрами, а в методах молекулярной спектроскопии – с широкими слабоструктурированными спектрами. Это определяет возможность их применения в количественном анализе и требования, предъявляемые к измерительной аппаратуре – спектральным приборам.
Хроматография широко применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в т. ч. промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов.
В некоторых случаях для идентификации веществ используется хроматография в сочетании с другими физико-химическими и физическими методами, например с масс-спектрометрией, ИК-, УФ-спектроскопией и др. Для расшифровки хроматограмм и выбора условий опыта применяют ЭВМ.
Основные достоинства хроматографического анализа:
• экспрессность; высокая эффективность; возможность автоматизации и получение объективной информации;
• сочетание с другими физико-химическими методами;
• широкий интервал концентраций соединений;
• возможность изучения физико-химических свойств соединений;
• осуществление проведения качественного и количественного анализа;
• применение для контроля и автоматического регулирования технологических процессов.
В зависимости от природы взаимодействия, обусловливающего распределение компонентов между элюентом и неподвижной фазой, различают следующие основные виды хроматографии - адсорбционную, распределительную, ионообменную,эксклюзионную (молекулярно-ситовую) и осадочную.


42
.Полимер-неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.
Мономер-это вещество, способное к полимеризации. Также мономерами часто называют мономерные звенья в составе полимерных молекул.
Сополимер-разновидность полимеров, цепочки молекул которых состоят из двух или более различных структурных звеньев. Различают регулярные и нерегулярные сополимеры (коих большинство). Различные структурные звенья нерегулярных сополимеров беспорядочно расположены вдоль цепочки. В регулярных же сополимерах различные структурные звенья расположены упорядоченно и, следовательно, регулярные сополимеры могут быть представлены как обычные полимеры с большими структурными звеньями.
43.
Названия полимеров
Существуют два основных способа названий полимеров.
1. Название полимера строится по названию исходного мономера с добавлением приставки "поли" (полиэтилен, полистирол и т.п.). Этот способ используется обычно для полимеров, полученных путем полимеризации.
2. Полимеру дается тривиальное название (лавсан, нитрон, найлон и т.п.), которое не отражает строения макромолекул, но удобно своей краткостью. Данный способ применяют создатели полимерных материалов (фирмы, научные и производственные коллективы).
Так, название ЛАВСАН присвоено полимеру
[–O–CH2–CH2–O–CO–C6H4–CO–]n
полиэтиленгликольтерефталат
как сокращенное название ЛАборатории Высокомолекулярных Соединений Академии Наук.
44.
1. По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.
Органические полимеры. Образованы с участием органических радикалов ( CH3, C6H5, CH2 ). Это смолы и каучуки.
Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы ( Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель – кремнийорганические соединения.
Неорганические полимеры. Их основу составляют оксиды Si, Al, Mg, Ca и др. Углеводородный скелет отсутствует. К ним относятся керамика, слюда, асбест.
Следует отметить, что в технических материалах часто используют сочетания отдельных групп полимеров. Это композиционные материалы ( например, стеклопластики ).
2. По форме макромолекул полимеры делят на линейные, разветвленные, ленточные, пространственные, плоские.

45.
Благодаря ценным свойствам полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве имедицине, автомобиле- и судостроении, авиастроении, в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

46.
Полимеризация и поликонденсация
Синтетические полимеры получают в результате реакций полимеризации и поликонденсации.
Полимеризация — это процесс соединения друг с другом большого числа молекул мономера за счет кратных связей (С = С, С = О и др.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав,
Поликонденсация — зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и да более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам.Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей. Макромолекула при цепной полимеризации образуется очень быстро и сразу же приобретает конечные размеры, т. е не возрастает при увеличении длительности процесса.
Полимеризация мономеров циклического строения происходит за счет раскрытия цикла и в ряде случаев пропекает не по цепному, а по ступенчатому механизму. Макромолекула при ступенчатой полимеризации образуется постепенно, т. е. сначала образуется димер затем тример и т.д., поэтому молекулярная масса полимера растет со временем.
Принципиальное отличие ценной полимеризации от ступенчатой и от поликонденсации состоит в том, что на разных стадиях процесса реакционная смесь всегда состоит из мономера и полимера и не содержит ди-, три-, тетрамеров. С увеличением продолжительности реакции растет лишь число макромолекул полимера, а мономер расходуется постепенно. Молекулярная масса полимера не зависит от степени завершенности реакции или, что то же, от конверсии мономера, которая определяет только выход полимера.
Реакции в цепях полимеров
Многие полимеры нельзя получить ни полимеризацией, ни поликонденсацией, поскольку или неизвестны исходные мономеры, или мономеры не образуют высокомолекулярных соединения, синтез таких полимеров осуществляют, исходя из высокомолекулярных соединений, макромолекулы которых содержат реакционноспособные функциональные группы. По этим группам полимеры вступают и те же реакции, что и содержащие такие группы низкомолекулярные соединения.
Реакции в цепях полимера могут происходить без существенного изменения молекулярной массы полимера (таи называемые полимер-аналогичные превращения), с увеличением молекулярной массы полимера (синтез привитых и блок сополимеров) или с уменьшением молекулярной массы (деструкция макромолекул).
47.
1. Особенности строения и свойств.
Полимеры - это высокомолекулярные вещества, молекулы которых состоят из повторяющихся структурных элементов - звеньев, соединенных в цепочки химическими связями, в количестве, достаточном для возникновения специфических свойств. К специфическим свойствам следует отнести следующие способности: способность к значительным механическим обратимым высокоэластическим деформациям; к образованию анизотропных структур; к образованию высоковязких растворов при взаимодействии с растворителем; к резкому изменению свойств при добавлении ничтожных добавок низкомолекулярных веществ.
Приведенные физико-химические особенности можно объяснить исходя из представления о строении полимеров. Говоря о строении следует подразумевать элементный состав вещества, порядок связи атомов, природу связей, наличие межмолекулярных взаимодействий. Характерным для полимеров является наличие длинных цепных молекул с резким различием характера связей вдоль цепи и между цепями. Особенно следует отметить, что нет изолированных цепных молекул. Молекула полимера всегда находится во взаимодействии с окружающей средой, могущей иметь как полимерный характер (случайчистого полимера), так и характер обычной жидкости (разбавленные растворы полимеров). Поэтому для характеристики полимера не достаточно указания типа связей вдоль цепи - необходимо еще иметь сведения о природе межмолекулярного взаимодействия. Следует иметь в виду, что характерные свойства полимеров могут быть реализованы только тогда, когда связи вдоль цепи намного прочнее поперечных связей, образующихся вследствие межмолекулярного взаимодействия любого происхождения. Именно в этом и состоит основная особенность строения полимерных тел. Поэтому можно утверждать, что весь комплекс аномальных свойств полимеров определяется наличием линейных цепных молекул с относительно слабым межмолекулярным взаимодействием. Разветвление этих молекул или соединение их в сетку вносит некоторые изменения в комплекс свойств, но не меняет положения дел по существу до тех пор, пока остаются достаточно длинные цепные линейные отрезки. Напротив, утрата цепного строения молекул при образовании из них глобул или густых сеток приводит к полной утрате всего комплекса характерных для полимеров свойств.
Следствием вышеуказанного является возникновение гибкости цепной молекулы. Она заключается в её способность изменять форму под влиянием теплового движения звеньев или внешнего поля, в которое помещен полимер. Это свойство связано с внутренним вращением отдельных частей молекулы относительно друг друга. В реальных молекулах полимеров валентные углы имеют вполне определённую величину, а звенья расположены не произвольно, и положение каждого последующего звена оказывается зависимым от положения предыдущего.
Полимеры, у которых наблюдаются достаточно интенсивные крутильныеколебания, называются гибкоцепными, а полимеры, у которых повороты одной части цепи относительно другой затруднены - жесткоцепными.
Значит, молекулы могут вращаться и изменять своё строение без разрыва химических связей, образуя различные конформации, под которыми понимают различные пространственные формы молекулы, возникающие при изменении относительной ориентации отдельных её частей в результате внутреннего вращения атомов или групп атомов вокруг простых связей, изгиба связей и др.
Таким образом: полимеры - химические соединения с высокой мол.массой (от нескольких тысяч до многих миллионов), молекулы которых (макромо¬лекулы) состоят из большого числа повто¬ряющихся группировок (мономерных звеньев). Атомы, входящие в состав мак¬ромолекул, соединены друг с другом силами главных и (или) координационных валентностей.





48.
Свойства полимеров.
Линейные полимеры обладают специфическим комп¬лексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотроп¬ные высокоориентированные волокна и пленки, способность к большим, дли¬тельно развивающимся обратимым дефор¬мациям; способность в высокоэластичном со-стоянии набухать перед растворением; высокая вязкость растворов.Этот комп¬лекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гиб¬костью макромолекул. При переходе от линейных цепей к разветвленным, ред¬ким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комп¬лекс свойств становится всё менее выра¬женным. Сильно сшитые полимеры нераство¬римы, неплавки и неспособны к высоко¬эластичным деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромоле¬кулы. В кристаллических полимерах возможно возник¬новение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во мно¬гом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут нахо¬диться в трех физических состояниях: стекло¬образном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пласти¬ками. В зависимости от химического состава, строения и взаимного расположения мак¬ромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородныхцепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообраз¬ное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклооб¬разный продукт, переходящий в высоко¬эластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекуляр-ными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики.
Полимеры могут вступать в следующие основные типы реакций: образование химических свя¬зей между макромолекулами (так называемое сши¬вание), например при вулканизации кау¬чуков, дублении кожи; распад макромо¬лекул на отдельные, более короткие фраг¬менты, реак¬ции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные пре¬вращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромоле¬кулы, например внутримолекулярная циклизация. Сшивание часто протекает одно¬временно с деструкцией. Примером полимераналогичных превращений может слу¬жить омыление поливтилацетата, при¬водящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомо¬лекулярными веществами часто лимити¬руется скоростью диффузии последних в фазу полимера. Наиболее явно это проявля¬ется в случае сшитых полимеров. Скорость взаи¬модействия макромолекул с низкомоле¬кулярными веществами часто сущест¬венно зависит от природы и расположения соседних звеньев относительно реагирую¬щего звена. Это же относится и к внутри¬молекулярным реакциям между функ¬циональными группами, принадлежащи-ми одной цепи.
Некоторые свойства полимеров, например раствори¬мость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств приме¬сей или добавок, реагирующих с макро¬молекулами. Так, чтобы превратить ли¬нейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров - химический состав, молекулярная масса и моле¬кулярно-массовое распределение, сте¬пень разветвленности и гибкости макро¬молекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

49.
Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот —нуклеотиды, в полисахаридах — моносахариды.
Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).
Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химические реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократительную функцию, превращая химическую энергию в механическую работу и обеспечивая подвижность организма в целом или его частей. Белки - основной материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеидными мембранами, рибосомы построены из белка и РНК и т.д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (активный транспорт ионов и др.) и с ферментативным катализом. Белки выполняют и регуляторные функции (репрессоры), «запрещая» или «разрешая» проявление того или иного гена. В высших организмах имеются белки - переносчики тех или иных веществ (например, гемоглобин - переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и некоторые другие функции. Белки и нуклеиновые кислоты образуются в живых организмах путём матричного ферментативного биосинтеза. Имеются теперь и биохимические системы внеклеточного синтеза Биополимеры с помощью ферментов, выделенных из клеток. Разработаны методы химического синтеза белков и нуклеиновых кислот.
50.51.52.53.
Основы химической термодинамики. Термохимия
Химическая термодинамика - один из разделов физической химии. Физическая химия - наука, которая изучает химические явления на основе физических принципов и законов (физика химических явлений). Она является теоретической основой всей химической науки и технологии химических производств, различных технологических процессов, которые применяются в нехимических отраслях промышленности.
Физическая химия тесно связана с физикой. Она изучает и устанавливает количественные взаимосвязи между химическими процессами и физическими параметрами системы.
Слово "термодинамика" происходит от греческих слов "термос" - тепло и "динамос" - сила, мощь.
Термодинамика изучает законы превращения энергии из одной формы в другую в различных процессах. Выделяют общую или физическую термодинамику (изучает общие вопросы превращения энергии);техническую термодинамику (изучает взаимопревращение между теплотой и механической работой) ихимическую термодинамику (изучает превращение различных форм энергии в ходе химической реакции и при фазовых переходах, а также способность химических систем выполнять полезную работу).
Химическая термодинамика используется для решения таких задач, как
1) предсказание о возможности протекания химической реакции;
2) о направленности химической реакции;
3) о характере химического процесса.
Основным объектом исследования термодинамики является система. Это понятие означает ту часть материального мира, которая является предметом наблюдения или исследования. Это тело или группа тел, выделенных мысленно из материального мира (газ в баллоне, образец вещества, тепловая машина и т.д.). Остальная часть материального мира - за пределами условно выделенной из него системы - называется окружением или окружающей средой. Между средой и системой возможен обмен веществом и энергией.
Термодинамическая система может быть изолированной, замкнутой или открытой. Изолированная система - это система, которая совершенно не взаимодействует с окружающей средой (обмен веществом и энергией отсутствует). В замкнутой системе невозможен обмен веществом с окружающей средой (присутствует только обмен энергией). Системы, свободные от этих ограничений, называются открытыми (присутствует обмен и веществом, и энергией).
Состояние системы можно охарактеризовать некоторыми величинами, которые называютсятермодинамическими параметрами состояния. К ним относятся температура (Т), объем (v), давление (р), концентрация (с).
Характерным для термодинамики является то, что в ней рассматриваются главным образом равновесные системы. Термодинамическая система называется равновесной, если в любой точке системы значения параметров состояния одинаковы и не изменяются самопроизвольно во времени. Параметры системы, находящейся в равновесии, являются взаимозависимыми, и с изменением одного из них происходит изменение других. Количественно эта взаимосвязь может быть выражена в виде функциональной зависимости термодинамических параметров и называется уравнением состояния
f (p, v, T) = 0.
В зависимости от характера состояния системы функция может быть более или менее сложной. Например, для n молей идеального газа эта функция является наиболее простой:
pv = nRT
и называется уравнением Менделеева - Клапейрона.
Любой параметр состояния системы является функцией остальных ее параметров. Например, Т = f (p, v). Такие функции в термодинамике называются функциями состояния. Значение этой функции зависит только от параметров состояния и не зависит от пути перехода системы в состояние равновесия.
Термодинамическая система может переходить из одного состояния в другое в результате протекания термодинамического процесса. Термодинамическим процессом называется совокупность последовательных состояний, через которые проходит система при взаимодействии ее с внешней средой. При этом ее параметры претерпевают изменения.
Обмен энергией между системой и окружающей средой может происходить двумя путями:
1) передача теплоты - способ передачи энергии, вызываемый разностью температур между системой и ее окружающей средой или между двумя разными системами. Такой способ передачи энергии осуществляется за счет хаотичного, беспорядочного движения молекул. Количество энергии, передаваемой таким образом, обозначается Q. Количество переданной теплоты пропорционально массе (m) системы и изменению температуры ΔТ, вызванному этой передачей энергии:
Q = m • ΔТ,
где ΔТ = Т2 -Т1.
Если точно известно, из какого вещества состоит система, и это вещество можно охарактеризовать его удельной теплоемкостью с, то уравнение примет вид:
Q = m • c • ΔТ, [Дж].
Удельная теплоемкость (суд.) вещества - это энергия, необходимая для повышения температуры 1 г (кг) данного вещества на 1 К, [Дж/г•К].
Молярная теплоемкость (сm) - это энергия, необходимая для повышения температуры 1 моля данного вещества на 1 К, [Дж/моль•К];
2) выполнение работы. Эта форма передачи энергии от одной системы к другой (или к окружающей среде) за счет упорядоченного, целенаправленного движения молекул. Система выполняет работу, если действует с некоторой силой, направленной на преодоление сопротивления. Например, чаще всего в химии рассматривают работу, выполняемую системой при расширении. Если действующей на систему силой является давление, то работа определяется уравнением:
A = - p Δv, [Дж],
где Δv = v2 - v1. Знак "-" соответствует тому, что работа выполняется системой, а следовательно, система теряет энергию.
Работа и теплота не являются функциями состояния, так как их величина зависит от пути перехода системы из одного состояния в другое. Следует также отметить, что теплота и работа сами по себе не содержатся в системе. Содержится энергия в виде различных форм движения, которые в момент передачи от одной системы к другой могут стать теплотой или работой.
Кроме p, v, T к функциям состояния системы относится энергия. Это мера способности системы совершать работу. Энергия может существовать в разнообразных формах. Например, химическая, электрическая, механическая, ядерная, солнечная. Химическая энергия относится к химическим системам, солнечная - к энергии Солнца. Механическую форму можно подразделить на кинетическую (энергию, связанную с движением тела) и потенциальную (энергию, запасенную телом).
Сумма кинетической и потенциальной энергии всех частиц в системе называется внутренней энергией(U) системы.
Кинетическая энергия обусловлена движениями частиц, а потенциальная энергия обусловлена электростатическими силами притяжения между частицами и внутри частиц.
Внутренняя энергия системы является функцией состояния системы. Абсолютное значение внутренней энергии системы не поддается экспериментальному определению, поэтому в термодинамике рассматривают только изменение внутренней энергии системы:
ΔU = U2 - U1
где U2 - внутренняя энергия системы в конечном состоянии,
U1 - внутренняя энергия системы в начальном состоянии.
ΔU имеет отрицательное значение в том случае, когда система теряет энергию, т.е. когда энергия передается от системы к ее окружению.
Термодинамика основывается на двух основных законах, называемых первым и вторым началами. Они представляют собой аксиомы, установленные на основе множества экспериментальных фактов и опыта. Оба закона имеют несколько формулировок.
1 закон термодинамики представляет собой одну из формулировок закона сохранения энергии применительно к термодинамическим процессам. Закон сохранения энергии утверждает, что энергия не создается и не уничтожается, а только лишь превращается из одной формы в другую. 1 закон термодинамики можно сформулировать так: "Невозможно создать вечный двигатель первого рода, т.е. машину, которая совершала бы работу, не затрачивая энергию". Вторая формулировка повторяет математическую формулу: "Изменение внутренней энергии системы (ΔU) равно сумме между количеством теплоты (Q) и количеством работы (А)"
ΔU = Q + A, [Дж].
Если работа имеет положительное значение, система приобретает энергию. Это означает, что работа выполняется над системой. Если работа выполняется самой системой, то система теряет энергию, и работа имеет отрицательное значение:
ΔU = Q - A, [Дж].
Рассмотрим некоторые закономерности, вытекающие из 1 закона или так называемые частные случаи 1 закона.
1) Изохорный процесс (V = const).
А = 0, т.к. не происходит изменения объема.
ΔU = Qv.
Qv = n • cv • (T2 - T1).

2) Изотермический процесс (Т = const).
Внутренняя энергия системы не меняется. Вся сообщаемая теплота расходуется на совершение работы А по расширению системы.
ΔU = 0.
Qт = А.
А = nRT • 2,3 lg (если изменяется объем).

А = nRT • 2,3 lg (если изменяется давление).
3) Адиабатный процесс (Q = 0).
Теплообмен с окружающей средой отсутствует. Система может совершать работу только за счет убыли внутренней энергии. А = - ΔU.
A = n c (T1 - T2).
4) Изобарный процесс (р = const). ΔU = Qp - A
Qp = ΔU + A = ΔH.
ΔH - функция состояния системы, называемая энтальпией.
Таким образом, для изобарного процесса теплота его равна изменению энтальпии системы.
А = p Δv.
Qp = n cp (T2 - T1)

Итак, теплота, поглощаемая системой при постоянном давлении, равна изменению энтальпии системы ΔH = Qp.
Изменение энтальпии можно представить в виде
ΔH = Н2 - Н1,
где Н1 - энтальпия реагентов, Н2 - энтальпия продуктов. Эту величину еще называют теплотой реакции. В зависимости от значения ΔH реакция может быть эндотермической и экзотермической.
Каждый конкретный процесс характеризуется стандартным изменением молярной энтальпии ΔHm° (298 К). Это изменение энтальпии при образовании 1 моль данного вещества из входящих в него элементов в стандартных условиях (Т = 298 К, р = 1 атм.).
Например, 2Н2 + О2 = 2Н2О, ΔHm° = - 571,6 кДж/моль.
Количество выделенной или поглощенной теплоты называется тепловым эффектом химической реакции. Уравнение химической реакции, в котором указан тепловой эффект, называется термохимическим уравнением.
Энтальпии многих реакций не поддаются экспериментальному определению по той причине, что эти реакции невозможно провести в лабораторных условиях. Они могут быть вычислены по известным энтальпиям других реакций с помощью закона Гесса. В 1840 г. русский ученый Г. Гесс опытным путем установил факт независимости теплового эффекта химического процесса от пути его протекания. Этот закон является основным законом термохимии и гласит:
"Тепловой эффект процесса не зависит от пути перехода, а зависит только от вида и состояния исходных веществ и конечных продуктов".
Закон Гесса справедлив только для условий постоянства объема или давления:
Qv = ΔU
Qp = ΔU + A.
Рассмотрим закон Гесса на примере сгорания графита до углекислого газа. Реакцию можно проводить по двум направлениям: 1) С + О2 = СО2, ΔH
2) С + ½ О2 = СО, ΔH1
СО + ½ О2 = СО2, ΔH2.
Очевидно, что ΔH = ΔH1 + ΔH2.
Таким образом, независимо от того, сгорает ли графит сначала в СО и затем в СО2 или сразу в СО2, тепловой эффект будет одним и тем же. Из уравнения следует, что ΔH1= ΔH - ΔH2, т.е. можно вычислить теплоту промежуточной реакции, если известны теплоты других реакций, комбинированием которых она может быть представлена. Из закона Гесса вытекают два следствия:
1) Тепловой эффект реакции равен сумме теплот образования (ΔHобр.) продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом стехиометрических коэффициентов.
ΔHх.р. = ∑ (ΔHобр.)прод. - ∑ (ΔHобр.)исх.
2) Тепловой эффект реакции равен сумме теплот сгорания (ΔHсгор.) исходных веществ за вычетом суммы теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов.
ΔHх.р. = ∑ (ΔHсгор.)исх. - ∑ (ΔHсгор.)прод.
Под теплотой образования ΔHобр. понимают тепловой эффект образования 1 моль вещества из простых веществ, устойчивых при стандартных условиях.
Под теплотой сгорания ΔHсгор. понимают тепловой эффект сгорания 1 моль вещества до СО2 и Н2О.
Стандартная молярная энтальпия образования ΔHm° всякого свободного элемента равна 0.
I закон термодинамики утверждает, что, хотя между системой и ее окружением возможна передача энергии, энергия никогда не создается и не исчезает. Одно время полагали, что все химические реакции являются экзотермическими, т.е. химическая реакция может осуществляться только в том случае, если система теряет энергию. Однако в настоящее время известны многие химические и физические превращения, которые являются эндотермическими. Следовательно, по одному лишь изменению энергии или энтальпии еще нельзя предсказать, будет самопроизвольно осуществляться реакция или нет. Чтобы предсказать, возможно ли самопроизвольное протекание реакции, необходимо ввести еще одну термодинамическую функцию состояния, называемую энтропией S. Энтропию можно охарактеризовать как меру хаотичности, беспорядка в системе. Например, частицы газа в гораздо большей мере не упорядочены, чем частицы твердого вещества. Следовательно, энтропия газов, как правило, намного больше, чем энтропия твердых веществ.
Так как энтропия является функцией состояния системы, ее величина может вполне определяться параметрами состояния системы:
S = f (p, T, v).
Существование энтропии определяет II закон термодинамики. Он также имеет несколько формулировок:
1. "Теплота сама собой не может переходить от холодного тела к горячему" (Клаузиус);
2. "Невозможен процесс, единственным результатом которого было бы превращение теплоты в работу" (Томсон);
3. "Невозможно создать вечный двигатель второго рода, т.е. машину, все действие которой сводится к производству работы и охлаждению теплоисточника" (Оствальд).
Поясним последнюю формулировку. Невозможно построить такую машину, так как любая тепловая машина должна иметь холодильник с более низкой температурой, чем теплоисточник. Поэтому часть теплоты от теплоисточника (котла) совершает работу, а другая часть переходит к холодильнику.

Схема перехода теплоты в работу
II закон термодинамики является одним из наиболее общих положений всей науки в целом. Главная мысль его заключается в том, что в любой изолированной системе с течением времени происходит постоянное возрастание степени беспорядка, т.е. энтропии. Следовательно, для любых самопроизвольных процессов
ΔS ≥ 0.
Знак ">" - для необратимых процессов, знак "=" - для обратимых процессов.
Для обратимых процессов ΔS = Q/T, [ Дж/К • моль].
Для необратимых процессов ΔS > Q/T, [ Дж/К • моль].
Термодинамика изучает макросистемы. Любое макросостояние системы может быть определено множеством микросостояний.
Число микросостояний, с помощью которых может быть осуществлено данное макросостояние, называетсятермодинамической вероятностью ω. Между энтропией и термодинамической вероятностью существует функциональная связь, выраженная формулой Больцмана:
S = k • lnω,
где k - константа Больцмана, равная 1,38•10-16.
Все процессы, связанные с увеличением упорядоченности (уменьшения числа микросостояний) (отвердевание, кристаллизация, сжатие, конденсация), сопровождаются уменьшением энтропии.
II закон термодинамики имеет ясный физический смысл только тогда, когда его применяют к любой ограниченной системе.
Функции системы, которые связаны с работой и говорящие о направлении процесса, называются термодинамическими потенциалами.
Критерием для суждения о направлении процессов в изолированных системах может служить изменение энтропии ΔS. Однако на практике большинство процессов протекает в неизолированных системах и связано с теплообменом и изменением объема. Поэтому для неизолированных систем необходимо иметь другие критерии.
Для процессов, протекающих при постоянных Т и V, применяется изохорно-изотермический потенциал (свободная энергия Гельмгольца F):
ΔF = U - T • S.
Для процессов, протекающих при постоянных Т и р, критерием, определяющим направление течения процесса, будет являться другая термодинамическая функция - изобарно-изотермический потенциал (свободная энергия Гиббса G):
ΔG = H - T • S.
Критерии обратимости и необратимости процессов, при которых совершается только работа расширения
Условия, при которых протекает процесс Обратимый равновесный процесс Необратимый процесс
U, S - const ΔU = 0 ΔU < 0
V, U - const ΔS = 0 ΔS > 0
T, V - const ΔF = 0 ΔF < 0
T, p - const ΔG = 0 ΔG < 0

54.55.56.
О принципиальной возможности протекания химических реакций судят по величине изменения свободной энергии системы . Однако этого недостаточно, чтобы предсказать реальную возможность химического процесса, определить скорость реакции, ее механизм, а также управлять процессом.
Например, термодинамическая вероятность окисления водорода до газообразной воды
Н2(Г) + 1/2О2(Г) = Н2О(Г), = –228,3 кДж/моль
значительно выше, чем вероятность реакции окисления оксида азота (II)
NO(Г) + 1/2О2(Г) = NO2(Г), = –35,1 кДж/моль.
В то же время первая реакция при комнатной температуре практически не протекает, и смесь водорода с воздухом может храниться в этих условиях длительное время, вторая же реакция при тех же условиях протекает мгновенно. Таким образом, для полного описания химического процесса необходимо знать закономерность протекания его во времени. Скорость и механизм химических реакций изучает химическая кинетика.

3.2.1. Скорость химических реакций

Различают гомогенные и гетерогенные химические реакции.
Гомогенные – это реакции, протекающие между веществами, находящимися в однородной среде, т. е. между ними нет границы раздела (газовая фаза, жидкая фаза). Реакции протекают равномерно по всему объему системы:
2NaOH(Ж) + H2SO(Ж) = Na2SO4(Ж) + 2Н2О(Ж).
Гетерогенные – это реакции в неоднородной среде, протекающие между веществами, находящимися в разных фазовых состояниях (твердое и жидкое вещество, газообразное и твердое вещество и пр.). Такие реакции протекают только на поверхности раздела фаз, образующих эту систему:
CaCO3(Т) + 2HCl(Ж) = CaCl2(Ж) + CO2(Г) + Н2О(Ж).
Под скоростью химической реакции понимается изменение коли¬чества вещества (моль) в единицу времени в единице реакцион¬ного пространства. Для гомогенных реакций реакционное простран¬ство – объем, , моль/л∙ед. времени, гетерогенных – площадь поверхности раз¬дела фаз, , моль/м2∙ед. времени.
Так как отношение количества вещества к единице объема называется концентрацией вещества (С, моль/л), то скорость гомогенного процесса равна изменению концентрации чаще исходных веществ во времени:

(36)

где – средняя скорость реакции, моль/л∙ед. времени; – измене¬ние концентрации исходных веществ, моль/л; – время протека¬ния процесса, с, мин и пр.
Скорость реакций зависит от ряда факторов: природы реагирующих веществ, их концентрации, температуры и давления процесса, наличия в системе катализатора, а в случае гетерогенных реакций – от состоя¬ния поверхности раздела фаз.

3.2.2. Зависимость скорости реакции от концентрации реагентов

Чтобы произошла химическая реакция необходимо столкновение молекул реагирующих веществ. Число таких столкновений растет с увеличением числа молекул в единице объема, т. е. с возрастанием концен¬трации реагентов. Соответственно, с повышением концентрации реаги¬рующих веществ увеличивается скорость реакции.
Зависимость скорости реакции от концентрации реагирующих веществ определяетсязаконом действия масс, который был открыт опытным путем в 1867 г. К. Гульдбергом и П. Вааге (Норвегия).
Скорость химической реакции, протекающей при постоянной температуре в гомогенной среде, прямо пропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов, называемых порядками реакции по реагентам.
Рассмотрим гомогенный процесс окисления оксида азота (II):
2NO(Г) + O2(Г) = 2NO2(Г).
Обозначим концентрации реагирующих веществ: . Матема¬тическое выражение закона действия масс для процесса примет вид:

(37)

где – константа скорости реакции.
Константа скорости реакции зависит от химической природы реаги¬рующих веществ, температуры процесса, наличия в системе катализатора, но не зависит от концентрации реагирующих веществ.
Уравнение (37) называется кинетическим уравнением химической реакции.
Сумма показателей степеней при концентрациях веществ в кинетическом уравнении (n) определяет молекулярность или порядок реакции. Для уравнения (37) порядок равен: n = 2 + 1 = 3. Для одностадийных процессов n ≤ 3. При большем порядке реакции протекают в несколько стадий.
В случае гетерогенных реакций в математическое выражение закона действия масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрации веществ, находящихся в твердой фазе, представляют собой постоянную величину и входят в константу скорости реакции ( ). Например, для реакции горения угля:
С(Т) + О2(Г) = СО2(Г), кинетическое уравнение имеет вид:

(38)

где .

Зависимость скорости реакции от природы реагирующих веществ и температуры

Химическая реакция (разрыв связей между атомами в молекулах исходных веществ и образование новых связей между атомами в молекулах продуктов реакции, (см. рис. 32, подразд. 3.1) протекает при непосред¬ственном столкновении молекул исходных веществ, причем последние должны обладать при этом достаточным запасом кинетической энергии, иначе их столкновение будет неэффективным.
Избыточная кинетическая энергия, которой должны обладать молекулы исходных веществ для того, чтобы их столкновение могло привести к образованию нового вещества, называется энергией активации данного процесса , кДж/моль. Молекулы, обладающие такой энергией, называются активными.
Энергия активации – это фактор, посредством которого природа реагирующих веществ влияет на скорость реакции. Значения для химических реакций лежат в пределах 40….400 кДж/моль. Установлено, если:
< 40 кДж/моль, скорость очень велика, реакции протекают практиче¬ски мгновенно (ионные реакции в растворах);
> 120 кДж/моль, скорость очень мала, реакции при обычных условиях визуально не видны (синтез аммиака);
≈ 40….120 кДж/моль, скорость характерна для большинства химических реакций, её можно замерить.
В химических реакциях выделяется три последовательно сменяющихся энергетических состояния, примером может служить схема реакции синтеза иодистого водорода HJ:

Активированный комплекс возникает в качестве промежуточного состояния в ходе как прямой, так и обратной реакции. В состоянии активированного комплекса старые связи еще не разрушены, но уже ослаблены, новые связи наметились, но еще не образовались. Время существования его не велико (10–14….10–11 с). Энергетически он отличается от исходных веществ и продуктов реакции (рис. 35).



Рис. 35. Энергетическая схема реакции cинтеза HJ

Энергия, необходимая для перехода вещества в состояние активированного комплекса, называется энергией активации прямого или обратного процессов, при этом прямой реакции ≠ Еа обратной реакции.
В 1889 г. шведский ученый С. Аррениус вывел уравнение, которое носит его имя:

, (39)

где – константа скорости реакции; – предэкспоненциальный множи¬тель (отражает частоту столкновений и ориентацию реагирующих частиц); – основание натурального логарифма; – энергия активации процесса; – универсальная газовая постоянная (8,314 Дж/моль∙К); – абсолютная температура процесса, К.
Из уравнения Аррениуса следует, что константа скорости реакции, а, следовательно, и скорость реакции, уменьшается с ростом энергии активации. Повышение же температуры процесса приводит к увеличению константы и скорости реакции.
Зависимость скорости реакции (константы скорости) от температуры определяется правилом Я. Вант-Гоффа (Голландия, 1884 г.).
При повышении температуры на 10 градусов скорость большин¬ства реакций увеличивается в 2–4 раза:

, (40)

где и – скорости реакций при температурах и ; – темпера¬турный коэффициент скорости реакции.
– это число, показывающее, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10 градусов.
С увеличением температуры растет число молекул, кинетическая энергия которых равна или выше энергии активации , следовательно, растет доля молекул, способных к активным столкновениям с образова¬нием активированного комплекса, т. е. происходит ускорение реакции.


3.2.4. Механизмы химических реакций

Под механизмом химических реакций понимается последовательность протекания простейших стадий реакции. Классификация химических реакций по механизмам протекания представлена на рис. 36.



Рис. 36. Классификация химических реакций по механизму протекания

Число молекул реагентов, принимающих участие в элементарной стадии реакции, называется молекулярностью реакции. Одностадийные реакции с молекулярностью более трех неизвестны.
Простые (одностадийные) реакции протекают через образование активированного комплекса, порядок реакции совпадает с молекулярностью, а кинетическое уравнение процесса – с законом действующих масс. К реакциям подобного типа относятся реакции:
– диссоциации 2HJ → H2 + J2, ;
– соединения NO + O3 = NO2 + O2,
К сложным реакциям относятся реакции, протекающие последовательно или параллельно через несколько стадий. Скорость реакции будет определять самая медленная (лимитирующая) стадия процесса. Например, реакция разложения N2O5, 2N2O5 = 4NO2 + O2 протекает через несколько стадий:
N2O5 ↔ NO2+ NO3 (быстрая стадия);
NO2 + NO3 → NO2 + NO + O2 (медленная стадия);
NO + NO3 ↔ 2NO2 (быстрая стадия).
Лимитирующей является вторая (бимолекулярная) стадия процесса: , порядок реакции в данном случае (n = 1 + 1 = 2) совпадает с молекулярностью суммарной реакции разложения N2O5, однако такое равенство не всегда имеет место.
В последнее время все больше внимания уделяется периодическим процессам (колебательным реакциям). Такие периодические процессы характеризуются колебаниями концентраций некоторых промежуточных соединений и, соответственно, скоростей этих стадий процесса. Реакции были открыты в середине прошлого века Б.П. Белоусовым (Россия).
Примером подобных процессов является реакция окисления малоновой кислоты СН3(СООН)2 избытком перекиси водорода Н2О2 в присутствии иодат ионов JO3– и ионов марганца Mn2+, играющих роль катализатора, а также индикатора – крахмала. На рис. 37 представлена схема протекания этого процесса.



Рис. 37. Схема колебательной реакции окисления малоновой кислоты

В ходе реакции окраска раствора периодически меняется: желтая, темно-синяя, бесцветная, – затем цикл повторяется. Колебания прекращаются после полного окисления малоновой кислоты. Изменение окраски связано с периодическим изменением концентрации: JO3–, J2, J2∙крах¬мал. Период колебаний зависит от концентрации веществ и температуры процесса.
Механизм протекания колебательных реакций очень сложен и объясняется на основе термодинамически необратимых процессов.
В начале прошлого века российские ученые Н.А. Шилов и Н.Н. Семенов разработали теорию цепных реакций. Такие реакции встречаются часто: горение топлива в двигателях внутреннего сгорания, реакции полимеризации, реакции, протекающие в атмосфере и пр.
Цепные реакции начинаются со стадии инициирования, т. е. образования активных частиц (свободных радикалов), которые представляют собой осколки молекул, имеющих неспаренные электроны: Cl*, O*, HS* и др. Свободные радикалы образуются при воздействии на систему света, тепла, излучения высокой энергии, либо в ходе экзотермических процессов (горение органического топлива в двигателях внутреннего сгорания). Появление свободных радикалов называется стадией зарождения цепи. Далее идет рост цепи – радикалы взаимодействуют с молекулами, образуя продукты реакции и новые радикалы. Процесс заканчивается обрывом цепи, когда радикалы, взаимодействуя друг с другом или с молекулами, образуют другие нейтральные молекулы.

57.58.59.
Понятия о катализе

Наиболее мощным способом интенсификации химических процессов является применение катализаторов.
Катализаторы – это вещества, которые ускоряют химические процессы, но при этом не испытывают превращений в ходе реакции. Явление изменения скорости реакции под действием таких веществ называется катализом.
Как правило, катализаторы обладают селективным, т. е. избирательным действием, подбирая вид катализатора, можно изменить ход протекания реакции.
Например, этанол С2Н5ОН в присутствии оксидов алюминия и тория разлагается на этилен С2Н4 и воду:
С2Н5ОН С2Н4 + Н2О,
в присутствии никеля, железа, серебра или меди – на ацетальдегид СН3СОН и водород:
С2Н5ОН СН3СОН + Н2.
Сущность действия катализаторов очень сложна и до конца не изучена. Предполагается, что в каталитических процессах снижается энергия активации реакции (см. рис. 35), так как в присутствии катализатора образуются другие промежуточные активированные комплексы, которые требуют меньшей энергии образования, чем в реакциях, протекающих без катализатора. Многие молекулы исходных веществ, энергия которых была недостаточна для активных столкновений в обычных реакциях, в присутствии катализатора становятся активными. Следовательно, . Катализаторы увеличивают скорость реакции , но не влияют на термодинамику процесса, т. е. не изменяют величины и . На активность катализатора влияют промоторы – вещества, при добавлении в небольших количествах которых, эффективность действия катализатора повышается, икаталитические яды – вещества, снижающие каталитическую активность.
Различают гомогенный и гетерогенный катализ.
При гомогенном катализе катализатор и реагирующие вещества находятся в одном фазовом состоянии (газ, жидкость).
Пример, промышленное получение серной кислоты.
Реакция окисления: 2H2SO3 + O2 = 2H2SO4 – протекает медленно, она заменяется на быстрые каталитические реакции, где катализатором является NO:
O2 + 2NO = 2NO2, NO2 + H2SO3 = H2SO4 + NO.
Таким образом, гомогенные каталитические реакции протекают через образование промежуточных соединений, в которых участвует катализатор.
Многие природные и физиологические процессы, катализируемые ферментами, протекают по механизму гомогенного катализа: расщепление белков, дегидратация СО2 из крови и т. д.
При гетерогенном катализе катализатор и реагенты находятся в разных фазовых состояниях, чаще всего катализатор – твердое вещество, и реакция протекает на поверхности катализатора. Скорость такой реакции зависит от площади поверхности катализатора, поэтому последний часто наносят на вещества с развитой поверхностью – подложку (пористые угли, силикаты и пр.).
Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через образование активных промежуточных соединений, которые представляют собойповерхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий (подвод реагентов в зону реакции, адсорбция на поверхности катализатора, собственно химическая реакция, десорбция), в которых участвуют и промежуточные соединения, реакция заканчивается образованием конечных продуктов, а катализатор – не расходуется.
Гетерогенный катализ в промышленности применяется при получении аммиака, азотной и серной кислот, водорода и пр. К наиболее распространенным катализаторам относятся: Pt,Ni, Pd, CuO, V2O5, Al2O3, SiO2 и др. Применение каталитических процессов обеспечивает экономию сырья и энергии, а также решает экологические задачи. Например, катализаторы применяют для доокисления токсичных выхлопных газов в двигателях внутреннего сгорания до нетоксичных компонентов:
CnHm + qO2 nCО2 + m/2Н2О,
2NO + 2CO N2 +2CO2 + 690 кДж (в качестве катализатора используется металлическая вата из нержавеющей стали или сплавы никеля).

3.2.6. Необратимые и обратимые реакции, химическое равновесие

Все химические реакции делятся на две группы: необратимые и обратимые.
Необратимые реакции протекают в одном направлении, до полного израсходования одного из реагирующих веществ, обязательное условие их протекания – удаление продуктов реакции из сферы реакции (в виде газа, нерастворимого соединения или слабого электролита).
Пример:
Zn + 4HNO3 = Zn(NO3)2 + 2NO2↑ + 2H2O.
Обратимые реакции протекают в двух взаимно противоположных направлениях, реакция не идет до конца, т. е. ни одно из реагирующих веществ не расходуется полностью, реакция идет до определенного предела, называемого химическим равновесием.
Рассмотрим обратимый процесс: H2 + J2 ↔ 2HJ.
В начальный момент времени ( ) концентрации исходных веществ равны: , а концентрация продуктов реакции отсутство¬вала: = 0. При этих условиях реакция протекает только в прямом направлении, кинетическое уравнение имеет вид:
. (41)

Скорость обратной реакции в начальный момент времени равна нулю:

. (42)

В ходе прямой реакции концентрации водорода и иода непрерывно уменьшаются, в соответствии с этим пропорционально снижается скорость прямого процесса. Одновременно с этим нарастает концентрация продукта реакции HJ и в момент времени ≠ 0. Появляются условия, определяющие протекание обратной реакции, кинетическое уравнение обратного процесса имеет вид:

. (43)

По мере нарастания концентрации иодоводорода HJ увеличивается скорость обратной реакции, в момент времени , когда скорости прямой и обратной реакции выравниваются:

, (44)

наступает динамическое химическое равновесие системы.
Химическое равновесие – это такое состояние системы, при котором скорости прямого и обратного процессов равны, а концентрации всех веществ, участвующих в процессе, перестают изменяться и называются равновесными.
Состояние равновесия характеризует тот предел, к которому в данных условиях обратимая реакция протекает самопроизвольно, → 0.
В формуле (44) выразим скорости реакций через равновесные концен¬трации реагирующих веществ:

. (45)

Перенесем константы в одну сторону уравнения, а равновесные кон¬центрации – в другую:

. (46)

Отношение констант скоростей прямого и обратного процессов тоже представляет собой постоянную величину, которая называется констан¬той равновесия данного равновесного процесса . Для равновесного процесса, протекающего при постоянной температуре, в общем случае: mA + nB ↔ pC + qD, константа равновесия выразится уравнением:

, (47)

где – равновесные концентрации продуктов реакции; – равновесные концентрации исходных веществ, – стехиометриче¬ские коэффициенты в уравнении реакции.
Константа равновесия является количественной характеристикой равновесного процесса:
– для необратимых реакций, прошедших до конца, → , так как кон¬центрация продуктов реакции значительно больше концентрации ис¬ходных веществ;
– при полном отсутствии химического взаимодействия, , так как концентрация исходных веществ значительно превосходит концен¬трацию продуктов реакции.
В случае гетерогенных равновесных процессов в выражение константы равновесия входят только концентрации тех веществ, которые находятся в газовой или жидкой фазе.

Пример: CO2(Г) + С(К) ↔ 2СО(Г),

. (48)

Константа равновесия реакции связана с изменением энергии Гиббса процесса зависимостью:

. (49)

Уравнение (49) справедливо для любой температуры, но чаще приме¬няется для стандартных условий: 25 °С (298 К). При подстановке значе¬ния газовой постоянной ( = 8,314 Дж/ моль∙К) и стандартной темпера¬туры уравнение (49) примет вид:

. (50)

Это уравнение позволяет, зная значение , вычислять константу равновесия и, наоборот, по экспериментально найденному зна¬чению определять .

Смещение химического равновесия, принцип Ле Шателье

Состояние химического равновесия зависит от ряда факторов: концентрации реагирующих веществ, температуры, давления в системе. Если условия изменяются, система выходит из состояния равновесия, при этом скорости прямой и обратной реакций изменяются не пропорционально. Через некоторое время равновесие устанавливается при новых внешних условиях.
Переход из одного равновесного состояния в другое, отвечающее новым внешним условиям, называется сдвигом или смещением химического равновесия.
В 1884 г. Ле Шателье (Франция) сформулировал принцип, определяющий влияние различных факторов на равновесные системы.
Если на систему, находящуюся в равновесии, оказать какое-либо воздействие (изменить концентрацию веществ, температуру или давление), то в результате протекающих в ней процессов равновесие сместится в том направлении, что оказанное воздействие уменьшится.
60.
Зако́ны Ра́уля — общее название открытых французским химиком Ф. М. Раулем в 1887 г. количественных закономерностей, описывающих некоторые коллигативные (зависящие от концентрации, но не от природы растворённого вещества) свойства растворов.Содержание [убрать]
Первый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом:
Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.
Для бинарного раствора, состоящего из компонентов А и В (компонент А считаем растворителем) удобнее использовать другую формулировку:
Относительное понижение парциального давления пара растворителя над раствором не зависит от природы растворённого вещества и равно его мольной доле в растворе.
На поверхности оказывается меньше способных испаряться молекул растворителя, ведь часть места занимает растворённое вещество.
Растворы, для которых выполняется закон Рауля, называются идеальными. Идеальными при любых концентрациях являются растворы, компоненты которых очень близки по физическим и химическим свойствам (оптические изомеры, гомологи и т. п.), и образование которых не сопровождается изменением объёма и выделением либо поглощением теплоты. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором.
Второй закон Рауля
Тот факт, что давление паров над раствором отличается от давления паров над чистым растворителем, существенно влияет на процессы кристаллизации и кипения. Из первого закона Рауля выводятся два следствия, касающиеся понижения температуры замерзания и повышения температуры кипения растворов, которые в объединённом виде известны как второй закон Рауля.
Понижение температуры кристаллизации растворов
Условием кристаллизации является равенство давления насыщенного пара растворителя над раствором давлению пара над твёрдым растворителем. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, это равенство всегда будет достигаться при температуре более низкой, чем температура замерзания растворителя. Так, океанская вода начинает замерзать при температуре около минус 2 °C.
Разность между температурой кристаллизации растворителя T°fr и температурой начала кристаллизации раствора Tfr есть понижение температуры кристаллизации.
Понижение температуры кристаллизации бесконечно разбавленных растворов не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора.

Поскольку по мере кристаллизации растворителя из раствора концентрация последнего возрастает, растворы не имеют определённой температуры замерзания и кристаллизуются в некотором интервале температур.
Повышение температуры кипения растворов
Жидкость кипит при той температуре, при которой общее давление насыщенного пара становится равным внешнему давлению. Если растворённое вещество нелетуче (то есть давлением его насыщенных паров над раствором можно пренебречь), то общее давление насыщенного пара над раствором равно парциальному давлению паров растворителя. В этом случае давление насыщенных паров над раствором при любой температуре будет меньше, чем над чистым растворителем, и равенство его внешнему давлению будет достигаться при более высокой температуре. Таким образом, температура кипения раствора нелетучего вещества Tb всегда выше, чем температура кипения чистого растворителя при том же давлении T°b.

Повышение температуры кипения бесконечно разбавленных растворов нелетучих веществ не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора
Криоскопическая и эбулиоскопическая константы
Коэффициенты пропорциональности К и Е в приведённых выше уравнениях — соответственно криоскопическая и эбулиоскопическая постоянные растворителя, имеющие физический смысл понижения температуры кристаллизации и повышения температуры кипения раствора с концентрацией 1 моль/кг. Для воды они равны 1.86 и 0.52 K•моль−1•кг соответственно. Поскольку одномоляльный раствор не является бесконечно разбавленным, второй закон Рауля для него в общем случае не выполняется, и величины этих констант получают экстраполяцией зависимости из области малых концентраций до m = 1 моль/кг.
Для водных растворов в уравнениях второго закона Рауля моляльную концентрацию иногда заменяют молярной. В общем случае такая замена неправомерна, и для растворов, плотность которых отличается от 1 г/см³, может привести к существенным ошибкам.
Второй закон Рауля даёт возможность экспериментально определять молекулярные массы соединений, неспособных к диссоциации в данном растворителе; его можно использовать также для определения степени диссоциации электролитов.
Растворы электролитов
Законы Рауля не выполняются для растворов (даже бесконечно разбавленных), которые проводят электрический ток — растворов электролитов. Для учёта этих отклонений Вант-Гофф внёс в приведённые выше уравнения поправку — изотонический коэффициент i, неявно у
Неподчинение растворов электролитов законам Рауля и принципу Вант-Гоффа послужили отправной точкой для создания С. А. Аррениусом теории электролитической диссоциации.
Свойства растворов
Все растворы обладают некоторыми свойствами, которые практически зависят только от соотношения числа частиц компонентов раствора и не зависят от природы частиц. Общие свойства раствора – это свойства идеального раствора.
Идеальным называется раствор, образованный компонентами, имеющими строго одинаковые размеры частиц и строго одинаковую энергию межмолекулярного взаимодействия.
Основными законами, описывающими свойства растворов, являются: закон Генри, законы Рауля (1-й, 2-ой, 3-ий), осмотический закон Вант-Гоффа. Следует отметить, что эти законы выполняются только для разбавленных растворов.
Все растворы независимо от агрегатного состояния обладают способностью к диффузии. Диффузией называется свойство вещества равномерно распределяться по всему предоставленному ему объему. Скорость диффузии (скорость выравнивания концентрации по объему) в газах велика, в твердых телах при обычных температурах диффузия длится годы. В растворах диффузия протекает за десятки часов, для небольших порядка литра объемов раствора.
Если в сосуд налить концентрированный раствор, а сверху добавить чистый растворитель, то начнется процесс диффузии, как растворителя, так и растворенного вещества до полного выравнивания концентрации по всему объему.
Можно создать условия, когда диффузия идет только по растворителю. Для этого разделим раствор и чистый растворитель пленкой, через которую могут проходить только молекулы растворителя. Такие пленки называются полупроницаемыми мембранами.
Процесс односторонней диффузии растворителя через полупроницаемую мембрану называется осмосом.
При односторонней диффузии растворителя в раствор, объем последнего начинает увеличиваться, что влечет за собой увеличение гидростатического давления, которое препятствует диффузии растворителя. При некотором давлении наступает равновесие: сколько молекул растворителя проникло в раствор, столько же выталкивается из него увеличившимся давлением.
Равновесное давление раствора, препятствующее диффузии растворителя через полупроницаемую мембрану, называется осмотическим давлением.
Осмотический закон Вант-Гоффа.
Вант-Гофф показал, что для разбавленных растворов независимо от природы растворителя и растворенного вещества математическое выражение для осмотического давления имеет вид:
Росм = CRT 1.4
где: Росм – осмотическое давление, С – молярная концентрация раствора, Т – абсолютная температура, R – универсальная газовая постоянная. При этом, если концентрация имеет размерность М/л, то осмотическое давление получается в КПа.
Осмотический закон Вант-Гофф сформулировал так:
Осмотическое давление разбавленных идеальных растворов численно равно тому давлению, которое оказывало бы растворенное вещества, если бы при данной температуре оно занимало объем раствора и находилось в газообразном состоянии. Схема осмоса приведена на рис.1.

Рис.1 Схема осмоса через полупроницаемую мембрану. 1 – полупроницаемая мембрана, 2 – растворитель, 3 – раствор. а – начальное состояние системы, б – конечное.


61.
Осмотическое давление - избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.
На примере воды появление осмотического давления обусловлено существованием полупроницаемых перегородок (мембран), которые пропускают отдельные молекулы воды, но препятствуют прохождению гидратированных ионов. Если подобная перегородка помещена между растворами разных концентраций, то из раствора меньшей концентрации в раствор большей концентрации будет переходить больше молекул воды, чем в обратном направлении. Возникает своеобразное явление перетекания воды, которое продолжается до тех пор, пока не произойдет выравнивание концентраций или пока этот процесс (если он протекает в ограниченном объеме) не будет уравновешен возникающим гидростатическим давлением. Такое давление называется осмотическим.
Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

62.
Дисперсные системы, гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностъю раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или несколько дисперсных фаз) в виде мелких кристаллов. твердых аморфных частиц, капель или пузырьков. Дисперсные системы могут иметь и более сложное строение, например, представлять собой двухфазное образование, каждая из фаз которого, будучи непрерывной, проникает в объем другой фазы. К таким системам относятся твердые тела. пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью. некоторые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда "вырождается" до тончайших слоев (пленок), разделяющих частицы дисперсной фазы.
Основные типы дисперсных систем. Дисперсные системы условно делят на грубодисперсные и тонко(высоко)дисперсные. Последние, по традиции, называемые коллоидно-дисперсными или просто коллоидными системами. В грубодисперсных системах частицы имеют размеры от 1 мкм и выше, в коллоидных - от 1 нм до 1 мкм.
Коллоидные растворы.
Коллоидными растворами называются гетерогенные дисперсные системы, в которых частицы «растворенного» вещества обладают ультрамикроскопической (коллоидной) степенью дробления.
Методы получения:
Частицы коллоидных размеров могут быть получены, кроме того, с помощью ультразвука, путем распыления металлов в вольтовой дуге, конденсацией в особых условиях паров высококипящих веществ, например металлов.
Большое значение имеют механические способы получения коллоидов. В громадных масштабах в промышленности осуществляется диспергирование твердых веществ до «коллоидных» размеров путем раздавливания, истирания и др. В природе этот эффект производят силы выветривания.
Устойчивость:
Под кинетической устойчивостью понимают способность частиц коллоидного раствора находиться во взвешенном состоянии даже при существенном различии в плотностях дисперсионной среды и дисперсной фазы. Кинетическая устойчивость свойственна сильно разбавленным растворам и очень высокодисперсным золям.
Aгрегативная устойчивость — способность системы сохранять свою степень дисперсности. Устойчивость коллоидных растворов связана с наличием одноименного заряда у коллоидных частиц.



63.
Коллоидные растворы в природе и технике.
Организмы растений и животных состоят из растворов и студней высокомолекулярных веществ. Поэтому биохимия и медицина теснейшим образом связаны с коллоидной химией. Заметим также, что многие технологические процессы пищевой промышленности по существу являются коллоидными процессами. В хлебопекарной промышленности при приготовлении теста огромное значение имеют явления набухания, а при выпекании хлеба — явления коагуляции. Приготовление маргарина, соусов и майонезов представляет собою не что иное, как процесс эмульгирования. В молочной промышленности получение простокваши и сыра является процессом коагуляции и синерезиса (явление, обратное набуханию). Наконец, засолка и варка мяса также сводятся к явлениям коагуляции или, точнее, денатурации белков.
Помимо природных высокомолекулярных веществ в настоящее время в технике и быту применяют ряд синтетических высокомолекулярных продуктов. Сюда следует отнести синтетические каучуки и различные синтетические полимеры. Эти продукты, чрезвычайно разнообразные по химическому строению и свойствам, не только являются полноценными заменителями природных высокомолекулярных веществ, но и получают часто совершенно новое применение. Так, их используют для получения разнообразных пластмасс, в виде органического стекла, в качестве ионообменных материалов (ионитов) для очистки воды и выделения индивидуальных веществ из смесей, для изготовления деталей самолетов и автомобилей и даже корпусов малотоннажных судов. Показательно, что производство синтетических высокомолекулярных веществ значительно превысило производство не только традиционных конструктивных материалов, но и таких сравнительно новых материалов, как алюминиевые и магниевые сплавы.

64.
Электродный потенциал металла.
Электродный потенциал, разность электростатических потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение электродный потенциал обусловлено пространственным разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя.
Электрохимический ряд активности (напряжения) металлов показывает их сравнительную активность в реакциях окисления-восстановления.





65.
Гальванический элемент Даниэля-Якоби.
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов. Примером может служить гальванический элемент Даниэля-Якоби. Он состоит из медной пластины, погруженной в раствор CuSO4 и цинковой пластины, погруженной в раствор ZnSO4.
При работе медно-цинкового элемента протекают следующие основные процессы:
1) реакция окисления цинка
Процессы окисления в электрохимии получили название анодных процессов, а электроды, на которых идут процессы окисления, называют анодами;
2) реакция восстановления ионов меди
Процессы восстановления в электрохимии получили название катодных процессов, а электроды, на которых идут процессы восстановления, называют катодами;
3) движение электронов во внешней цепи;
4) движение ионов в растворе.
Суммируя электродные реакции, получаем:
Zn + Cu2+ = Cu + Zn2+
Вследствие этой химической реакции в ГЭ возникает электрический ток, поэтому ее называют токообразующей.
При схематической записи ГЭ границу раздела между проводником 1-го рода (металлом) и проводником 2-го рода (раствором электролита) обозначают одной вертикальной чертой, а границу раздела между проводниками 2-го рода - двумя чертами. Схема элемента Даниэля-Якоби записывается в виде:
(-) A Zn | Zn2+ || Cu2+ | Cu K (+)
Применение гальванических элементов. Понятие ЭДС.
Гальвани́ческий элеме́нт — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита.
Типы: угольно-цинковые (солевые), щелочные (жаргонное название — алкалиновые), никельоксигидроксидные (NiOOH), литиевые.
ЭДС – это физическая скалярная величина, численно равная работе сторонних сил по перемещению единичного положительно заряда.

66.
Классификация электродов.
Электрод представляет собой систему, в простейшем случае состоящую из двух фаз, из которых твердая обладает электронной, а другая - жидкая - ионной проводимостью.
По виду покрытия: с кислым покрытием, с основным покрытием, с целлюлозным покрытием, с рутиловым покрытием, с покрытием смешанного вида — с двойным обозначением.
Электроды подразделяются по роду и полярности тока, а также по номинальному напряжению холостого хода источника питания сварочной дуги переменного тока. Электроды делятся на металлические (стальные, вольфрамовые, чугунные, медные, бронзовые, латунные) и неметаллические (графитовые и угольные). Металлические электроды могут быть плавящимися, и это особенно удобно, так как они участвуют непосредственно в образовании сварного шва, растворяясь, и могут быть неплавящимися, только лишь для подвода тока к изделию, а присадочный металл вводится со стороны.
Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными потенциалами окислительно-восстановительных пар.

67.
Электрохимические источники тока.
Хими́ческий исто́чник то́ка (аббр. ХИТ) — источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию.
Принцип действия: основу химических источников тока составляют два электрода (анод, содержащий окислитель, и катод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов — электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая разрядный ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.
По возможности или невозможности повторного использования химические источники тока делятся на:
гальванические элементы, которые из-за необратимости протекающих в них реакций, невозможно перезарядить;
электрические аккумуляторы , перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить;
топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.

68.
Устройство и принцип действия, применение кислотного аккумулятора.
Свинцово-кислотный аккумулятор — наиболее распространенный на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: аккумуляторные батареи в автомобильном транспорте, аварийные источники электроэнергии.
Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде.
Энергия возникает в результате взаимодействия оксида свинца и серной кислоты до сульфата (классическая версия). Во время разряда происходит восстановление диоксида свинца на катоде[1] и окисление свинца на аноде. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода — на отрицательном. В итоге получается, что при разряде аккумулятора расходуется серная кислота из электролита и плотность электролита падает, а при заряде, серная кислота выделяется в раствор электролита из сульфатов, плотность электролита растёт.
Устройство: Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных изоляторов (сепараторов), которые погружены в электролит. Электроды представляют собой свинцовые решётки. У положительных активным веществом является перекись свинца (PbO2), у отрицательных активным веществом является губчатый свинец. Электроды погружены в электролит, состоящий из разбавленной дистиллированной водой серной кислоты (H2SO4).



69.
Устройство и принцип действия, применение щелочных аккумуляторов.
Устройство. Наиболее распространены никель-железные и никель-кадмиевые щелочные аккумуляторы. Их широко применяют на э. п. с, тепловозах и пассажирских вагонах. В никель-железных и никель-кадмиевых аккумуляторах активная масса положительного электрода в заряженном состоянии состоит из гидрата окиси никеля NiOOH, к которому добавляют графит и окись бария. Графит увеличивает электропроводность активной массы, а окись бария — срок службы электрода.
Применение. В основном аккумуляторные батареи используются для запуска двигателей автомобилей и других машин. Возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов. Необходимо помнить, что аккумуляторы следует поддерживать в заряженном состоянии, применяя для этого, к примеру, солнечную энергию
В будущем аккумуляторы рассчитывают применять для питания экологически чистых электромоторов.

70. Коррозия металлов.
Коррозия металлов — разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. [2] Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса — «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, — коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.


Типы коррозии.
Электрохимическая коррозия: Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита, с которым соприкасаются электроды - либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами.
Водородная и кислородная коррозия
Если происходит восстановление ионов H3O+ или молекул воды H2O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:
2H3O+ + 2e− → 2H2O + H2
или
2H2O + 2e− → 2OH− + H2
Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:
O2 + 2H2O + 4e− → 4OH−
Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.
Химическая коррозия — взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте.

71.
Механизмы коррозионных разрушений.
Механизм коррозии металлов определяется прежде всего типом агрессивной среды. В сухих окислительных газах при повышенных температурах на поверхности большинства конструкционных металлов образуется слой твердых продуктов коррозии (окалина). При условии сплошности этого слоя скорость коррозия металлов чаще всего лимитируется диффузией через него ионов металла к границе слой - газ или окислителя (напр., О2-) к границе слой-металл.
Иной механизм имеет очень распространенная коррозия металлов в электролитических средах - растворах электролитов (в т.ч. в виде тонких пленок на поверхности металла), пропитанных электролитами пористых и капиллярно-пористых телах (почвы, бетоны, некоторые изоляционные материалы, рыхлые отложения и др.), а также в расплавах электролитов. В таких средах суммарный процесс коррозия металлов можно записать в виде реакции: М+Ох=Мz++Red, (1)
где М - металл. Ох - частица окислителя. Red - его восстановленная форма (Ох имеет заряд +ze или Red - заряд -zе); здесь для упрощения принято равенство всех стехиометрических коэффициентов. В преобладающем большинстве случаев реакция (1) протекает по так называемому электрохимическому механизму: атом М и частица Ох непосредственно не контактируют, передача электронов от М к Ох происходит через зону проводимости М (рис. 1,а). Таким образом, процесс (1) фактически состоит из двух реакций: анодного растворения металла и катодного восстановления окислителя:
М=Mz++ze, (la) Ох+ze = Red.

72.
Виды электрохимической коррозии металлов с водородной и кислородной деполяризацией катода.
Электрохимическая коррозия может развиваться в результате контакта различных металлов. Процесс отвода электронов с катодных участков называется деполяризацией. Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами. На практике чаще всего приходится встречаться с двумя типами деполяризации: водородной и кислородной. Тип деполяризации (катодный процесс) зависит от реакции среды раствора электролита.
В кислой среде электрохимическая коррозия протекает с водородной деполяризацией. Рассмотрим коррозию железной пластинки с примесями меди во влажной хлористоводородной атмосфере. В этом случае железо будет анодом (E°= –0,44В), а медь – катодом (E°=+0,34В). На анодном участке будет происходить процесс окисления железа, а на катодном – процесс деполяризации ионами водорода, которые присутствуют в электролите:
А: Fe – 2e ® Fe2+ – окисление
К: 2 H+ + 2e ® H2 – восстановление
Схема возникающего короткозамкнутого гальванического элемента выглядит следующим образом:
A (–) Fe | HCl | Cu (+) К
В нейтральной среде коррозия протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере. Если коррозии во влажном воздухе подвергается железо с примесями меди, то электродные процессы можно записать в виде:
(А) Fe – 2e ® Fe2+ – окисление
(К) 2 H2O + O2 + 4e ® 4 OH– – восстановление
Схема короткозамкнутого гальванического элемента:
А (–) Fe | H2O, O2 | Cu (+) К
73.
Методы защиты металлов от коррозии.
Обычно выделяют три направления методов защиты от коррозии:
Конструкционный
Активный
Пассивный
Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод - использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.
В качестве защиты от коррозии может применяться нанесение какого-либо покрытия, которое препятствует образованию коррозионного элемента (пассивный метод).

74.
Электролиз. Последовательность электродных процессов. Электролиз с нерастворимыми и растворимыми анодами. Законы Фарадея.
Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.
Последовательность электродных процессов
При электролизе расплавов электролитов в электролите находятся лишь один вид катионов и один вид анионов, поэтому схема электролиза проста. Однако часто в электролите присутствуют несколько видов катионов и анионов и недиссоциированных молекул, поэтому возможно протекание нескольких электродных реакций.
Катодные процессы. Так как на катоде идет реакция восстановления, т. е. прием электронов окислителем, то в первую очередь должны реагировать наиболее сильные окислители. На катоде прежде всего протекает реакция с наиболее положительным потенциалом.
Анодные процессы. На аноде протекают реакции окисления восстановителей, т. е. отдача электронов. Поэтому на аноде в первую очередь окисляются вещества, имеющие наиболее отрицательный потенциал.
Характер реакций на аноде зависит также и от материала электрода. Различают нерастворимые и растворимые аноды.
Нерастворимые аноды изготавливают из угля, графита, платины. При электролизе нерастворимые аноды сами не посылают электроны во внешнюю цепь, электроны посылаются в результате окисления анионов и молекул воды.
Растворимые аноды. Электроны во внешнюю цепь посылает сам анод, а не анионы раствора. Растворимые аноды изготавливаются из меди, серебра, цинка, никеля и др. металлов. При электролизе с растворимым анодом идет анодное окисление атомов металла: Me0 – ne = Men+. Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например никель и железо в щелочном растворителе, свинец в серной кислоте. Явление торможения анодного растворения металла из-за образования защитных слоев называется пассивностью металла.
Законы электролиза Фарадея
1-й закон Фарадея. Количество вещества, испытавшего электрохимические превращения на электроде, прямо пропорционально количеству прошедшего электричества.
2-й закон Фарадея. Массы прореагировавших на электродах веществ при постоянном количестве электричества относятся друг к другу как эквивалентные массы.


75.
Электролиз. Практическое применение при получении чистых металлов, гальванопокрытий, электрохимическая обработка металлов.
Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.
Электрохимическая обработка металлов, группа методов, предназначенных для придания обрабатываемой металлической детали определенной формы, заданных размеров или свойств поверхностного слоя. Осуществляется в электролизерах (электролитических ваннах, электрохимических ячейках специальных станков, установок), где обрабатываемая деталь является либо анодом (анодная обработка), либо катодом (катодная обработка), либо тем и другим попеременно. Основной вид катодной электрохимической обработки металлов - гальваностегия.

© Copyright 2012-2020, Все права защищены.