s
Sesiya.ru

Система передачи информации на базе частотной модуляции

Информация о работе

Тема
Система передачи информации на базе частотной модуляции
Тип Отчет по практике
Предмет Компьютерные сети
Количество страниц 9
Язык работы Русский язык
Дата загрузки 2014-12-23 05:15:39
Размер файла 180.27 кб
Количество скачиваний 12
Скидка 15%

Поможем подготовить работу любой сложности

Заполнение заявки не обязывает Вас к заказу


Скачать файл с работой

Помогла работа? Поделись ссылкой

Міністерство освіти та науки України
Національний технічний університет України
«Київський політехнічний інститут»
Факультет інформатики та обчислювальної техніки
Кафедра автоматики та управління в технічних системах

Звіт
З переддипломної практики
Студента гр. ІА-03
На тему: Система передачи информации на базе частотной модуляции



Керівник практики від підприємства:
Керівник практики від НТУУ «КПІ»:







Київ 2014
Отчет:
За последнее время существенно повысился технический уровень электронной техники. Быстрое развитие требует создания все более точного и сложного автоматизированного технологического оборудования для изобретения более сложных и совершенных устройств с лучшими характеристиками и параметрами, меньшими габаритами.
Большое значение имеют средства передачи и приема информации. Сегодня существуют различные информационные системы связи: радиорелейная, оптическая, мобильная, спутниковая и другие.
В данной работе рассмотрена частотная модуляция. Рассмотрены схемы его реализации и принцип функционирования. Описаны различные виды модуляции, такие как амплитудная, фазовая и частотная, а также принцип действия соответствующих им модуляторов. Также приведен расчет одного из основных блоков обработки информации в данном устройстве, а именно частотного модулятора.


В данной расчетно-графической работе проведен анализ диапазонного передатчика с частотной модуляцией. Этот передатчик работает в диапазоне частот от 150 МГц до 160 МГц. При этом он обеспечивает выполнение ниже перечисленных характеристик, является сравнительно простым, малогабаритным и дешевым.
Характеристики передатчика:
1. Р1макс = 500 Вт
2. f = 150 ¸ 160 МГц
3. WФ = 50 Ом
4. Шаг сетки частот 12,5 кГц
5. Питание сетевое – 220 В, 50 Гц

Рис.4. Структурная схема ЧМ передатчика
Модулятор в радиотехнике и дальней связи, устройство, осуществляющее модуляцию — управление параметрами высокочастотного электромагнитного переносчика информации в соответствии с электрическими сигналами передаваемого сообщения. Модулятор является составной частью главным образом передающих устройств электросвязи и радиовещания. Переносчиком информации обычно служат гармонические колебания или волны с частотой (называемой несущей или поднесущей) ~ 104 — 1015 Гц. В зависимости от того, какой параметр гармонических колебаний или волн изменяется, различают амплитудную, частотную, фазовую или смешанную (например, при однополосной передаче) модуляцию колебаний. Соответственно различны и виды модулятор. При импульсно-кодовой модуляции переносчиком информации служит регулярная последовательность импульсов электрических, параметрами которых (амплитуда, ширина, частота или фаза повторений) управляют с помощью соответствующих типов импульсных модуляторов. Модулирующие электрические сигналы передаваемого сообщения могут иметь самую разнообразную форму: от простых и медленных телеграфных посылок в виде точек и тире или колебаний звукового диапазона частот при передаче речи и музыки до сложных, быстро изменяющихся сигналов, применяемых в телевидении или в многоканальной проводной и радиорелейной связи. Часто в функцию модулятора входит также усиление модулирующих колебаний.
Непременное требование к модуляции состоит в том, что модулирующее колебание должно изменяться во времени значительно медленнее модулируемого. Поэтому в любом модуляторе сочетаются взаимодействующие цепи модулируемых колебаний или волн с цепями модулирующего сигнала более низкой частоты. Определяющим в модуляторе является управляющий элемент, посредством которого сигнал воздействует на параметры модулируемых колебаний или волн. Электронная лампа как универсальный управляющий элемент сохранилась к 1974 главным образом в модуляторах мощных радиопередающих устройств (для них специально разработаны т. н. модуляторные лампы). Со временем при мощностях передатчиков ≤ 0,5 кВт лампы успешно вытеснились транзисторами и другими полупроводниковыми приборами. В устройствах, работающих на СВЧ, наряду с полупроводниковыми приборами используются клистроны, лампы бегущей волны и другие.
При амплитудной модуляции модулятор изменяет амплитуду генерируемых (или усиливаемых) колебаний с несущей частотой. В сеточном модуляторе лампового радиопередатчика модулирующее напряжение воздействует на входную (сеточную) цепь генератора или усилителя высокочастотных колебаний, в анодном модуляторе — на выходную (анодную) цепь генераторной лампы. Сеточный модулятор более экономичен, анодный же может обеспечить большую глубину модуляции при малых искажениях. В транзисторных радиопередатчиках базовый и коллекторный модуляторы являются транзисторными аналогами соответственно сеточного и анодного ламповых модуляторов. Для получения амплитудно-модулированных колебаний с подавленными колебаниями несущей частоты применяют так называемый балансный модулятор (однополосная модуляция).
При частотной модуляции и фазовой модуляции в качестве управляющего элемента в модуляторе используются так называемые реактивные устройства, у которых эффективная ёмкость или индуктивность (или то и другое) изменяется под действием модулирующего сигнала. Реактивное устройство включается или непосредственно в резонансный контур задающего генератора, или в последующие фазовращающие цепи радиопередатчика. В ламповых модуляторах такое устройство получило название реактивной лампы, в транзисторных — реактивного транзистора. Кроме того, в некоторых транзисторных фазовых и частотных модуляторах используют явление сдвига фазы генерируемых колебаний, зависящего при определённых режимах работы от значения постоянной составляющей коллекторного тока. Широкое применение в качестве реактивного управляющего элемента в модуляторах находят варикапы.
При импульсной модуляции в модуляторах управляющими элементами также служат электронная лампа или полупроводниковый прибор, например варикап, который запирает или отпирает волноводный тракт при посылках импульсного модулирующего напряжения различного знака.
Иногда модулятор входит в состав усилительных устройств, работающих в различных диапазонах частот — от звуковых до СВЧ. Магнитный усилитель имеет модулятор в виде насыщающегося дросселя электрического, индуктивностью которого управляет ток усиливаемого сигнала. В этом случае обычно модулируется переменный ток промышленной частоты, более высокой по сравнению с частотами спектра сигналов — обычно команд в системах автоматики. В диэлектрическом усилителе модулятор представляет собой нелинейный конденсатор, ёмкостью которого управляет напряжение сигнала. Модулятор является составной частью некоторых параметрических усилителей.
Аналоговый перемножитель сигнала (ПС) является универсальным базовым блоком, выполняющим ряд математических функций: умножение, деление, возведение в квадрат. В ряде случаев функциональные возможности ПС реализуются совместно с ОУ. ПС может применяться в качестве модулятора. Рассмотрим основные принципы построения модуляторов.
Балансный модулятор может иметь высокую линейность лишь по одному (модуляционному) входу. Второй вход (вход несущей) может запитываться переменным напряжением с постоянной амплитудой, причем уровень несущей может быть достаточно большим и вырождаться в функцию коммутации SН(t) (рис. 5,а).
Физически это означает, что активные элементы модулятора при высоком уровне входного сигнала превращаются в синхронные ключи, при этом модулирующий сигнал UM(t) (рис. 5,б) эффективно коммутируется с частотой несущей SН(t), образуя выходной сигнал в виде (рис. 5,в)
, (1)

Рис. 5. Диаграммы, поясняющие работу БМ при воздействии функции коммутации
где К – коэффициент пропорциональности.

Рис. 6. Схема БМ
Если на модулирующий вход подать сигнал с постоянной составляющей
, (2)
где U0 – напряжение постоянной составляющей; UM и - амплитуда и частота модулирующего напряжения; m=UM/U0, то на выходе ФНЧ БМ будет получен АМ сигнал


, (3)
где - уровень несущей АМ сигнала.
Реализация ПС в виде амплитудного модулятора на основе операционных усилителей и изменении проводимости полевого транзистора показана на рис.7. Здесь в качестве управляемого параметра используется проводимость канала полевого транзистора (ПТ), характеристика которой в режиме управляемого сопротивления аппроксимируется выражением
. (4)

Рис. 7. Амплитудный модулятор на основе ПТ и ОУ
Пусть на один вход (в цепь стока ПТ) подается относительно высокочастотный (несущий) сигнал UC1(t), а на второй вход (в цепь затвора ПТ) посредством инвертирующего сумматора на ОУ2 с единичным коэффициентом передачи – низкочастотный (модулирующий) UC2(t) и постоянная составляющая напряжения U0
; (5)
; (6)
, (7)
где Um1, Um2 и , - амплитуды и частоты соответственно несущего и модулирующего сигналов.
Принимая во внимание (4)…(7) и учитывая, что между затвором и истоком ПТ действует напряжение , для выходного напряжения амплитудного модулятора в соответствии с формулой можно записать
(8)
или
(9)
,
где Um0 и m – амплитуда несущей и глубина модуляции получаемого АМ колебания:
, (10)
. (11)
Линейный частотный модулятор.
Частотная модуляция, так же как и амплитудная, может быть осуществлена в отдельном от автогенератора модуляторе. Это актуально для ряда радиотехнических систем, в том числе и измерительных, требующих двух синхронизированных сигналов, один из которых представляет собой немодулированное колебание, а другой – колебание с ЧМ или АМ.
Линейный частотный модулятор (рис.8), реализованный на основе фазовой автоподстройки частоты (ФАПЧ), удовлетворяет таким требованиям. В состав системы ФАПЧ входят управляемый по частоте генератор 1, ФИ 2, цифровой частотно-фазовый демодулятор (ЦЧФД) 3, ДУ 4, сумматор 5 и сравнивающее устройство 6. Для осуществления линеаризации характеристики управления по частоте генератора введены преобразователь частоты в напряжение (ПЧН) 7 и фильтр низких частот (ФНЧ) 8.

Рис. 8. Структурная схема линейного частотного модулятора
Ко второму входу ЦЧФД посредством ФИ 9 подводится сигнал от внешнего высокочастотного генератора несущей частоты с напряжением . На второй вход сумматора подается модулирующий сигнал от внешнего низкочастотного генератора с напряжением . В связи с тем, что частотный диапазон работы ЦЧФД ограничен, но имеется необходимость получения сигналов с рабочей частотой, превышающей предельную частоту функционирования ЦЧФД, в состав линейного частотного модулятора могут быть введены делители частоты 10 и 11.
При отсутствии одного из делителей (10 или 11) частота напряжения на выходе управляемого генератора может быть ниже или выше частоты несущей внешнего генератора:
,
где , , - девиация частоты генератора 1 и коэффициенты деления делителей частоты 10 и 11 соответственно.
Для исключения влияния ЧМ на работу систем регулирования частоты среза ФНЧ в ЦЧФД и ФНЧ должны быть существенно ниже частоты ( ).
Линейность частотной модуляции в рассматриваемом модуляторе определяется линейностью характеристики ПЧН, входящего в состав системы линеаризации характеристики управления генератора. При определенном коэффициенте передачи сравнивающего устройства достигается привязка характеристики управляемого по частоте генератора к характеристике ПЧН. В соответствии с этим и частотная модуляция в модуляторе (рис.8), реализуемая под влиянием напряжения внешнего модулирующего сигнала, происходит по линейному закону.
Синхронизация несущей частоты управляемого генератора с частотой внешнего генератора производится посредством системы ФАПЧ.
При несовпадении частот, действующих на входах ЦЧФД, на выходе последнего образуется разность напряжений соответствующей полярности, которая после усиления в ДУ, сумматоре и сравнивающем устройстве воздействует на управляемый генератор так, что его частота совпадает с частотой сигнала внешнего генератора. Более того, из-за достаточно большого коэффициента передачи в цепи регулирования системы ФАПЧ разность фаз между сигналами, действующих на входах ЦЧФД, устанавливается близкой к нулю и всякое изменение частоты внешнего генератора сопровождается подстройкой частоты управляемого генератора так, что эта разность фаз приобретает определенное значение. Таким образом, частоты внешнего генератора и управляемого генератора совпадает с точностью до фазы независимо от состояния первого генератора.
Зная характеристику управления генератора с учетом коэффициента передачи сумматора, который может быть реализован на основе инвертирующей ОС, можно определить требуемый уровень модулирующего напряжения для достижения необходимой девиации частоты выходного сигнала и минимальную модулирующую частоту при соответствующем индексе модуляции, например, .
Характерной особенностью частотного модулятора является то, что при линейной характеристике управляемого генератора и постоянном уровне модулирующего напряжения девиация частоты остается неизменной при перестройке частоты внешнего генератора и, следовательно, частоты генератора.

Изменение частоты ЛЧМ в течение периода времени

© Copyright 2012-2020, Все права защищены.